5 research outputs found
Spatiotemporal Analysis of Produced Water Demand for Fit-For-Purpose Reuse—A Permian Basin, New Mexico Case Study
This study created a framework for assessing the spatial and temporal distribution of the supply and demand of four potential produced water (PW) reuse options: agriculture, dust suppression, power generation, and river flow augmentation using Eddy and Lea counties in the southeastern New Mexico Permian Basin as a case study. Improving the PW management in the oil and gas industry is important in areas with limited water resources and increasing restrictions on PW disposal. One option in the PW management portfolio is fit-for-purpose reuse, but a lack of adequate information on PW quality, volumes, and the spatiotemporal distribution of PW supply and demand precludes its reuse. Using the framework, we determined that a 1.1-mile grid cell for data aggregation is a sufficient spatial scale for capturing the granular data needed for PW management decisions. The annual available PW supply for the two counties was estimated to be 45,460,875 m3 (36,870 acre-feet). The annual cumulative estimated demand was 647,656,261 m3 (525,064 acre-feet) for the four potential use cases—far exceeding PW supply. The maps generated using the framework illustrated that much of the supply and demand are spatially dispersed. The spatiotemporal analysis framework provides a generic methodology that can be used for PW management in other basins or for assessing alternative waters at the local and regional scales where management occurs
Spatiotemporal Analysis of Produced Water Demand for Fit-For-Purpose Reuse—A Permian Basin, New Mexico Case Study
This study created a framework for assessing the spatial and temporal distribution of the supply and demand of four potential produced water (PW) reuse options: agriculture, dust suppression, power generation, and river flow augmentation using Eddy and Lea counties in the southeastern New Mexico Permian Basin as a case study. Improving the PW management in the oil and gas industry is important in areas with limited water resources and increasing restrictions on PW disposal. One option in the PW management portfolio is fit-for-purpose reuse, but a lack of adequate information on PW quality, volumes, and the spatiotemporal distribution of PW supply and demand precludes its reuse. Using the framework, we determined that a 1.1-mile grid cell for data aggregation is a sufficient spatial scale for capturing the granular data needed for PW management decisions. The annual available PW supply for the two counties was estimated to be 45,460,875 m3 (36,870 acre-feet). The annual cumulative estimated demand was 647,656,261 m3 (525,064 acre-feet) for the four potential use cases—far exceeding PW supply. The maps generated using the framework illustrated that much of the supply and demand are spatially dispersed. The spatiotemporal analysis framework provides a generic methodology that can be used for PW management in other basins or for assessing alternative waters at the local and regional scales where management occurs
A Literature Review of Hybrid System Dynamics and Agent-Based Modeling in a Produced Water Management Context
This paper explores the possibility and plausibility of developing a hybrid simulation method combining agent-based (AB) and system dynamics (SD) modeling to address the case study of produced water management (PWM). In southeastern New Mexico, the oil and gas industry generates large volumes of produced water, while at the same time, freshwater resources are scarce. Single-method models are unable to capture the dynamic impacts of PWM on the water budget at both the local and regional levels, hence the need for a more complex hybrid approach. We used the literature, information characterizing produced water in New Mexico, and our preliminary interviews with subject matter experts to develop this framework. We then conducted a systematic literature review to summarize state-of-the-art of hybrid modeling methodologies and techniques. Our research revealed that there is a small but growing volume of hybrid modeling research that could provide some foundational support for modelers interested in hybrid modeling approaches for complex natural resource management issues. We categorized these efforts into four classes based on their approaches to hybrid modeling. It appears that, among these classes, PWM requires the most sophisticated approach, indicating that PWM modelers will need to face serious challenges and break new ground in this realm
Conceptual Framework for Modeling Dynamic Complexities in Produced Water Management
This research addresses a gap in the produced water management (PWM) literature by providing a conceptual framework to describe the connections of PWM to regional water budgets. We use southeastern New Mexico as a case study, because the region is facing looming shortfalls in water availability, and oil and gas production generate high volumes of produced water in the region. The framework was developed through expert interviews, analysis of industry data, and information gained at industry meetings; it is supported by detailed descriptions of material flows, information flows, and PWM decisions. Produced water management decisions may be connected to regional water budgets through dynamic complexities; however, modeling efforts exploring PWM often do not capture this complexity. Instead, PWM is most often based on the least expensive management and disposal alternatives, without considering short and long-term impacts to the regional water budget. On the other hand, regional water budgets do not include treated produced water as a potential resource, thus missing opportunities for exploring the impact of potential beneficial reuse. This is particularly important when there is a need to address water shortages in chronically water-short regions of the United States. At the same time, oil and gas production in the western United States is challenged by the need to dispose of large volumes of produced water. The framework is useful for developing improved models of PWM to identify the impact of alternative management decisions on regional water budgets