366 research outputs found

    The James Ross Island and the Fletcher Promontory ice-core drilling projects

    Full text link

    Inferring palaeo-accumulation records from ice-core data by an adjoint-based method: application to James Ross Island's ice core

    Get PDF
    Ice cores contain a record of snow precipitation that includes information about past atmospheric circulation and mass imbalance in the polar regions. We present a novel adjoint method to reconstruct a climatic record by both optimally dating an ice-core and deriving 5 from it a detailed accumulation history. The motivation of our work is the recent application of phase sensitive radar which measures the vertical velocity of an ice column. The velocity is dependent on the history of subsequent snow accumulation, compaction and compression; and in our inverse formulation of this problem, measured vertical velocity profiles can be utilized directly thereby reducing the uncertainty intro10 duced by ice flow modelling. We first apply our method to synthetic data in order to study its capability and the effect of noise and gaps in the data on retrieved accumulation history. The method is then applied to the ice core retrieved from James Ross Island, Antarctica. We show that the method is robust and that the results depend on quality of the age-depth observations and the derived flow regime around the core site. 15 The method facilitates the incorporation of increasing detail provided by ice-core analysis together with observed full-depth velocity in order to construct a complete climatic record of the polar regions

    The James Ross Island and the Fletcher Promontory ice-core drilling projects

    Get PDF
    Following on from the successful project to recover an ice core to bedrock on Berkner Island, similar drilling equipment and logistics were used on two further projects to recover ice cores to bedrock in the Antarctic Peninsula. At James Ross Island, a ship- and helicopter-supported project drilled to bedrock at 363m depth in a single season, while a Twin Otter-supported project drilled to bedrock at 654m depth, again in a single season, from Fletcher Promontory. In both new projects, drilling was from the surface, with the infrastructure enclosed in a tent, using an uncased, partially fluid-filled, borehole

    Technical innovations and optimizations for intermediate ice-core drilling operations

    Get PDF
    The British Antarctic Survey, in collaboration with Laboratoire de Glaciologie et Géophysique de l’Environnement, has in recent years successfully drilled to bedrock on three remote sites around the Antarctic Peninsula. Based on the experience from the multi-season project at Berkner Island (948m depth, 2002–05) we optimized the drill set-up to better suit two subsequent single-season projects at James Ross Island (363m depth, 2008) and Fletcher Promontory (654m depth, 2012). The adaptations, as well as the reasons for them, are discussed in detail and include a drill tent set-up without a trench; drilling without a borehole casing with a relatively low fluid column height; and using a shorter drill. These optimizations were aimed at reducing cargo loads and installation time while maintaining good core quality, productivity and a safe working environment. In addition, we introduce a number of innovations, ranging from a new lightweight cable tensioning device and drill-head design to core storage and protection trays. To minimize the environmental impact, all the drill fluid was successfully recovered at both sites and we describe and evaluate this operation

    Development of the British Antarctic Survey Rapid Access Isotope Drill

    Get PDF
    The British Antarctic Survey Rapid Access Isotope Drill is an innovative new class of electromechanical ice drill, which has recently been used to drill the deepest dry hole drilled by an electromechanical auger drill. The record-breaking depth of 461.58 m was drilled in just over 104 hours at Little Dome C. The drill collects ice chippings, for water stable isotope analysis, rather than an ice core. By not collecting a core the winch can be geared for speed rather than core breaking and is lightweight. Furthermore, emptying of the chippings is performed by simply reversing the drill motor on the surface reducing the overall drilling time significantly. The borehole is then available for instrumentation. We describe the drill in its current state including modifications carried out since it was last deployed. Test seasons and the lessons learned from each are outlined. Finally, future developments for this class of drill are discussed

    Modelling the transition from grain-boundary sliding to power-law creep in dry snow densification

    Get PDF
    This paper presents a physics-based macroscale model for the densification of dry snow which provides for a smooth transition between densification by grain-boundary sliding (stage 1) and densification by power-law creep (stage 2). The model uses established values of the stage 1 and 2 densification rates away from the transition zone and two transition parameters with a simple physical basis: the transition density and the half-width of the transition zone. It has been calibrated using density profiles from the SUMup database and physically based expressions for the transition parameters have been derived. The transition model produces better predictions of the depth of the nominal bubble close-off horizon than the Herron and Langway model, both in its classical form and in a recent version with re-optimised densification rates

    Spatial and temporal distributions of surface mass balance between Concordia and Vostok stations, Antarctica, from combined radar and ice core data: first results and detailed error analysis

    Get PDF
    Results from ground-penetrating radar (GPR) measurements and shallow ice cores carried out during a scientific traverse between Dome Concordia (DC) and Vostok stations are presented in order to infer both spatial and temporal characteristics of snow accumulation over the East Antarctic Plateau. Spatially continuous accumulation rates along the traverse are computed from the identification of three equally spaced radar reflections spanning about the last 600 years. Accurate dating of these internal reflection horizons (IRHs) is obtained from a depth-age relationship derived from volcanic horizons and bomb testing fallouts on a DC ice core and shows a very good consistency when tested against extra ice cores drilled along the radar profile. Accumulation rates are then inferred by accounting for density profiles down to each IRH. For the latter purpose, a careful error analysis showed that using a single and more accurate density profile along a DC core provided more reliable results than trying to include the potential spatial variability in density from extra (but less accurate) ice cores distributed along the profile. The most striking feature is an accumulation pattern that remains constant through time with persistent gradients such as a marked decrease from 26 mm w.e. yr(-1) at DC to 20 mm w.e. yr(-1) at the south-west end of the profile over the last 234 years on average (with a similar decrease from 25 to 19 mm w.e. yr(-1) over the last 592 years). As for the time dependency, despite an overall consistency with similar measurements carried out along the main East Antarctic divides, interpreting possible trends remains difficult. Indeed, error bars in our measurements are still too large to unambiguously infer an apparent time increase in accumulation rate. For the proposed absolute values, maximum margins of error are in the range 4 mm w.e. yr(-1) (last 234 years) to 2 mm w.e. yr(-1) (last 592 years), a decrease with depth mainly resulting from the time-averaging when computing accumulation rates

    Factors controlling nitrate in ice cores: Evidence from the Dome C deep ice core

    Get PDF
    In order to estimate past changes in atmospheric NOx concentration, nitrate, an oxidation product of NOx, has often been measured in polar ice cores. In the frame of the European Project for Ice Coring in Antarctica (EPICA), a high-resolution nitrate record was obtained by continuous flow analysis (CFA) of a new deep ice core drilled at Dome C. This record allows a detailed comparison of nitrate with other chemical trace substances in polar snow under different climatic regimes. Previous studies showed that it would be difficult to make firm conclusions about atmospheric NOx concentrations based on ice core nitrate without a better understanding of the factors controlling NO3− deposition and preservation. At Dome C, initially high nitrate concentrations (over 500 ppb) decrease within the top meter to steady low values around 15 ppb that are maintained throughout the Holocene ice. Much higher concentrations (averaging 53 ppb) are found in ice from the Last Glacial Maximum (LGM). Combining this information with data from previous sampling elsewhere in Antarctica, it seems that under climatic conditions of the Holocene, temperature and accumulation rate are the key factors determining the NO3− concentration in the ice. Furthermore, ice layers with high acidity show a depletion of NO3−, but higher concentrations are found before and after the acidity layer, indicating that NO3− has been redistributed after deposition. Under glacial conditions, where NO3− shows a higher concentration level and also a larger variability, non-sea-salt calcium seems to act as a stabilizer, preventing volatilization of NO3− from the surface snow layers

    Greenland records of aerosol source and atmospheric lifetime changes from the Eemian to the Holocene

    Get PDF
    The Northern Hemisphere experienced dramatic changes during the last glacial, featuring vast ice sheets and abrupt climate events, while high northern latitudes during the last interglacial (Eemian) were warmer than today. Here we use high-resolution aerosol records from the Greenland NEEM ice core to reconstruct the environmental alterations in aerosol source regions accompanying these changes. Separating source and transport effects, we find strongly reduced terrestrial biogenic emissions during glacial times reflecting net loss of vegetated area in North America. Rapid climate changes during the glacial have little effect on terrestrial biogenic aerosol emissions. A strong increase in terrestrial dust emissions during the coldest intervals indicates higher aridity and dust storm activity in East Asian deserts. Glacial sea salt aerosol emissions in the North Atlantic region increase only moderately (50%), likely due to sea ice expansion. Lower aerosol concentrations in Eemian ice compared to the Holocene are mainly due to shortened atmospheric residence time, while emissions changed little.It is supported by funding agencies and institutions in Belgium (FNRS-CFB and FWO), Canada (NRCan/GSC), China (CAS), Denmark (FIST), France (IPEV, CNRS/INSU, CEA and ANR), Germany (AWI), Iceland (RannIs), Japan (NIPR), Korea (KOPRI), The Netherlands (NWO/ALW), Sweden (VR), Switzerland (SNF), United Kingdom (NERC), and the USA (US NSF, Office of Polar Programs). Long-term support of ice core research at the University of Bern by SNF is gratefully acknowledged

    A quantitative content analysis of Freedom of Information requests examining the extent and variations of tools and training for conducting suicide risk assessments in NHS Trusts across England

    Get PDF
    Objectives: Determining the risk for suicide is a difficult endeavour. Clinical guidance in the UK explicitly advises against using risk assessment tools and scales to determine suicide risk. Based on Freedom of Information requests made to NHS trusts in England, this study provides an overview of suicide risk assessment tools in use, training provided in how to use such assessments, and explores implementation of suicide risk assessment guidance in practice in English NHS trusts. Design: A cross-sectional survey of suicide risk assessment tools and training gathered via Freedom of Information requests and subjected to a content analysis. Setting: Freedom of Information requests were submitted to NHS trusts across England. Results: A wide variety of suicide risk assessments tools were identified as being used in practice, with several trusts reported using more than one tool to determine suicide risk. Forty-one trusts reported using locally developed, unvalidated, tools to assess risk of suicide and 18 stated they do not use a tool. Ten trusts stated they do not train their staff in suicide risk assessment whilst 13 reported use of specific suicide risk assessment training. Sixty-two trusts stated they do not centrally record the number of assessments conducted or how many individuals are identified as at risk. Content analysis indicated the frequent wider assessment of risk not restricted to suicide risk. Conclusions: There is wide variation in suicide risk assessment tools being used in practice and some lack of specific training for healthcare staff in determining suicide risk. Few trusts routinely record the number of assessments being conducted or the numbers of individuals identified at high risk. Implementation of specific training is necessary for the suicide risk assessment process to identify patient needs and develop therapeutic engagement. Routinely recording how many assessments are conducted is a crucial step in improving suicide prevention
    • …
    corecore