344 research outputs found

    Strange-Beauty Meson Production at ppˉp\bar p Colliders

    Full text link
    The production rates and transverse momentum distributions of the strange-beauty mesons BsB_s and Bs∗B_s^* at ppˉp\bar p colliders are calculated assuming fragmentation is the dominant process. Results are given for the Tevatron in the large transverse momentum region, where fragmentation is expected to be most important.Comment: Minor changes in the discussion section. Also available at http://www.ph.utexas.edu/~cheung/paper.htm

    Dissecting regulatory T cell expansion using polymer microparticles presenting defined ratios of self-antigen and regulatory cues

    Get PDF
    Biomaterials allow for the precision control over the combination and release of cargo needed to engineer cell outcomes. These capabilities are particularly attractive as new candidate therapies to treat autoimmune diseases, conditions where dysfunctional immune cells create pathogenic tissue environments during attack of self-molecules termed self-antigens. Here we extend past studies showing combinations of a small molecule immunomodulator co-delivered with self-antigen induces antigen-specific regulatory T cells. In particular, we sought to elucidate how different ratios of these components loaded in degradable polymer particles shape the antigen presenting cell (APC) -T cell interactions that drive differentiation of T cells toward either inflammatory or regulatory phenotypes. Using rapamycin (rapa) as a modulatory cue and myelin self-peptide (myelin oligodendrocyte glycoprotein- MOG) – self-antigen attacked during multiple sclerosis (MS), we integrate these components into polymer particles over a range of ratios and concentrations without altering the physicochemical properties of the particles. Using primary cell co-cultures, we show that while all ratios of rapa:MOG significantly decreased expression of co-stimulation molecules on dendritic cells (DCs), these levels were insensitive to the specific ratio. During co-culture with primary T cell receptor transgenic T cells, we demonstrate that the ratio of rapa:MOG controls the expansion and differentiation of these cells. In particular, at shorter time points, higher ratios induce regulatory T cells most efficiently, while at longer time points the processes are not sensitive to the specific ratio. We also found corresponding changes in gene expression and inflammatory cytokine secretion during these times. The in vitro results in this study contribute to in vitro regulatory T cell expansion techniques, as well as provide insight into future studies to explore other modulatory effects of rapa such as induction of maintenance or survival cues

    Microporous scaffolds loaded with immunomodulatory lentivirus to study the contribution of immune cell populations to tumor cell recruitment in vivo

    Full text link
    Metastases are preceded by stochastic formation of a hospitable microenvironment known as the premetastatic niche, which has been difficult to study. Herein, we employ implantable polycaprolactone scaffolds as an engineered premetastatic niche to independently investigate the role of interleukin‐10 (IL10), CXCL12, and CCL2 in recruiting immune and tumor cells and impacting breast cancer cell phenotype via lentiviral overexpression. Lentivirus delivered from scaffolds in vivo achieved sustained transgene expression for 56 days. IL10 lentiviral expression, but not CXCL12 or CCL2, significantly decreased tumor cell recruitment to scaffolds in vivo. Delivery of CXCL12 enhanced CD45+ immune cell recruitment to scaffolds while delivery of IL10 reduced immune cell recruitment. CCL2 did not alter immune cell recruitment. Tumor cell phenotype was investigated using conditioned media from immunomodulated scaffolds, with CXCL12 microenvironments reducing proliferation, and IL10 microenvironments enhancing proliferation. Migration was enhanced with CCL2 and reduced with IL10‐driven microenvironments. Multiple linear regression identified populations of immune cells associated with tumor cell abundance. CD45+ immune and CD8+ T cells were associated with reduced tumor cell abundance, while CD11b+Gr1+ neutrophils and CD4+ T cells were associated with enhanced tumor cell abundance. Collectively, biomaterial scaffolds provide a tool to probe the formation and function of the premetastatic niche.Metastases are preceded by stochastic formation of a hospitable microenvironment known as the premetastatic niche, which has been difficult to study. Herein, we employ implantable polycaprolactone scaffolds as an engineered premetastatic niche to independently investigate the role of interleukin‐10 (IL10), CXCL12, and CCL2 in recruiting immune and tumor cells and impacting breast cancer cell phenotype via lentiviral overexpression.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/153114/1/bit27179.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/153114/2/bit27179_am.pd

    Vector and pseudoscalar charm meson radiative decays

    Get PDF
    Combining heavy quark effective theory and the chiral Lagrangian approach we investigate radiative decays of pseudoscalar DD mesons. We first reanalyse D∗→DÎłD^{*} \rightarrow D \gamma decays within the effective Lagrangian approach using heavy quark spin symmetry, chiral symmetry Lagrangian, but including also the light vector mesons. We then investigate D→VÎłD \rightarrow V \gamma decays and calculate the D0→Kˉ∗0ÎłD^0 \rightarrow \bar{K}^{*0} \gamma and Ds+→ρ+ÎłD^{s+} \rightarrow \rho^+ \gamma partial widths and branching ratios.Comment: 21 pages Latex, no figures, IJS-TP-94/19, TUM-31-62/94, NUHEP-TH-94-

    Contamination of clinical specimens with MLV-encoding nucleic acids: implications for XMRV and other candidate human retroviruses

    Get PDF
    Efforts to assess the prevalence of xenotropic murine leukemia virus-related virus (XMRV) in patients with prostate cancer and chronic fatigue syndrome have relied heavily on PCR-based testing of clinical samples and have yielded widely divergent findings. This week in Retrovirology, reports from four independent research groups illustrate the extreme care needed to exclude DNA or RNA contamination in PCR analyses of XMRV. In addition, phylogenetic evidence suggesting that previously-published XMRV sequences originated from a commonly-used prostate carcinoma cell line (22Rv1) is presented. These findings raise important questions regarding the provenance of XMRV and its potential connection to human disease

    Supersymmetric effects in top quark decay into polarized W-boson

    Full text link
    We investigate the one-loop supersymmetric QCD (SUSY-QCD) and electroweak (SUSY-EW) corrections to the top quark decay into a b-quark and a longitudinal or transverse W-boson. The corrections are presented in terms of the longitudinal ratio \Gamma(t-->W_L b)/\Gamma(t--> W b) and the transverse ratio \Gamma(t-->W_- b)/\Gamma(t--> W b). In most of the parameter space, both SUSY-QCD and SUSY-EW corrections to these ratios are found to be less than 1% in magnitude and they tend to have opposite signs. The corrections to the total width \Gamma(t-->W b) are also presented for comparison with the existing results in the literature. We find that our SUSY-EW corrections to the total width differ significantly from previous studies: the previous studies give a large correction of more than 10% in magnitude for a large part of the parameter space while our results reach only few percent at most.Comment: Version in PRD (explanation and refs added

    Supersymmetric Electroweak Corrections to Single Top Quark Production at the Fermilab Tevatron

    Get PDF
    We have calculated the O(αewMt2/MW2)O(\alpha_{ew} M_t^2/M_W^2) supersymmetric electroweak corrections to single top quark production via qqˉâ€Č→tbˉq\bar q' \to t\bar b at the Fermilab Tevatron in the minimal supersymmetric model. The supersymmetric electroweak corrections to the cross section are a few percent for tanÎČ>1tan \beta> 1, and can exceed 10% for tanÎČ<1tan\beta<1. The combined effects of SUSY electroweak corrections and the Yukawa corrections can exceed 10% for favorable parameter values, which might be observable at a high-luminosity Tevatron.Comment: 13 pages, 4 figures available at reques

    Higgs-boson production associated with a bottom quark at hadron colliders with SUSY-QCD corrections

    Full text link
    The Higgs boson production p p (p\bar p) -> b h +X via b g -> b h at the LHC, which may be an important channel for testing the bottom quark Yukawa coupling, is subject to large supersymmetric quantum corrections. In this work the one-loop SUSY-QCD corrections to this process are evaluated and are found to be quite sizable in some parameter space. We also study the behavior of the corrections in the limit of heavy SUSY masses and find the remnant effects of SUSY-QCD. These remnant effects, which are left over in the Higgs sector by the heavy sparticles, are found to be so sizable (for a light CP-odd Higgs and large \tan\beta) that they might be observable in the future LHC experiment. The exploration of such remnant effects is important for probing SUSY, especially in case that the sparticles are too heavy (above TeV) to be directly discovered at the LHC.Comment: Results for the Tevatron adde

    Supersymmetric Electroweak Corrections to Charged Higgs Boson Production in Association with a Top Quark at Hadron Colliders

    Get PDF
    We calculate the O(αewmt(b)2/mW2)O(\alpha_{ew}m_{t(b)}^{2}/m_{W}^{2}) and O(αewmt(b)4/mW4)O(\alpha_{ew} m_{t(b)}^4/m_W^4) supersymmetric electroweak corrections to the cross section for the charged Higgs boson production in association with a top quark at the Tevatron and the LHC. These corrections arise from the quantum effects which are induced by potentially large Yukawa couplings from the Higgs sector and the chargino-top(bottom)-sbottom(stop) couplings, neutralino-top(bottom)-stop(sbottom) couplings and charged Higgs-stop-sbottom couplings. They can decrease or increase the cross section depending on tan⁥ÎČ\tan\beta but are not very sensitive to the mass of the charged Higgs boson for high tan⁥ÎČ\tan\beta. At low tan⁥ÎČ(=2)\tan\beta(=2) the corrections decrease the total cross sections significantly, which exceed -12% for mH±m_{H^{\pm}} below 300GeV300GeV at both the Tevatron and the LHC, but for mH±>300GeVm_{H^{\pm}}>300GeV the corrections can become very small at the LHC. For high tan⁥ÎČ(=10,30)\tan\beta(=10,30) these corrections can decrease or increase the total cross sections, and the magnitude of the corrections are at most a few percent at both the Tevatron and the LHC.Comment: 28 pages including 4 eps figure

    Single-Cell Transcriptomics in Cancer Immunobiology: The Future of Precision Oncology

    Get PDF
    Cancer is a heterogeneous and complex disease. Tumors are formed by cancer cells and a myriad of non-cancerous cell types that together with the extracellular matrix form the tumor microenvironment. These cancer-associated cells and components contribute to shape the progression of cancer and are deeply involved in patient outcome. The immune system is an essential part of the tumor microenvironment, and induction of cancer immunotolerance is a necessary step involved in tumor formation and growth. Immune mechanisms are intimately associated with cancer progression, invasion, and metastasis; as well as to tumor dormancy and modulation of sensitivity to drug therapy. Transcriptome analyses have been extensively used to understand the heterogeneity of tumors, classifying tumors into molecular subtypes and establishing signatures that predict response to therapy and patient outcomes. However, the classification of the tumor cell diversity and specially the identification of rare populations has been limited in these transcriptomic analyses of bulk tumor cell populations. Massively-parallel single-cell RNAseq analysis has emerged as a powerful method to unravel heterogeneity and to study rare cell populations in cancer, through unsupervised sampling and modeling of transcriptional states in single cells. In this context, the study of the role of the immune system in cancer would benefit from single cell approaches, as it will enable the characterization and/or discovery of the cell types and pathways involved in cancer immunotolerance otherwise missed in bulk transcriptomic information. Thus, the analysis of gene expression patterns at single cell resolution holds the potential to provide key information to develop precise and personalized cancer treatment including immunotherapy. This review is focused on the latest single-cell RNAseq methodologies able to agnostically study thousands of tumor cells as well as targeted single-cell RNAseq to study rare populations within tumors. In particular, we will discuss methods to study the immune system in cancer. We will also discuss the current challenges to the study of cancer at the single cell level and the potential solutions to the current approaches
    • 

    corecore