24 research outputs found

    Prion Infected Meat-and-Bone Meal Is Still Infectious after Biodiesel Production

    Get PDF
    The epidemic of bovine spongiform encephalopathy (BSE) has led to a world-wide drop in the market for beef by-products, such as Meat-and-Bone Meal (MBM), a fat-containing but mainly proteinaceaous product traditionally used as an animal feed supplement. While normal rendering is insufficient, the production of biodiesel from MBM has been suggested to destroy infectivity from transmissible spongiform encephalopathies (TSEs). In addition to producing fuel, this method simultaneously generates a nutritious solid residue. In our study we produced biodiesel from MBM under defined conditions using a modified form of alkaline methanolysis. We evaluated the presence of prion in the three resulting phases of the biodiesel reaction (Biodiesel, Glycerol and Solid Residue) in vitro and in vivo. Analysis of the reaction products from 263K scrapie infected MBM led to no detectable immunoreactivity by Western Blot. Importantly, and in contrast to the biochemical results the solid MBM residue from the reaction retained infectivity when tested in an animal bioassay. Histochemical analysis of hamster brains inoculated with the solid residue showed typical spongiform degeneration and vacuolation. Re-inoculation of these brains into a new cohort of hamsters led to onset of clinical scrapie symptoms within 75 days, suggesting that the specific infectivity of the prion protein was not changed during the biodiesel process. The biodiesel reaction cannot be considered a viable prion decontamination method for MBM, although we observed increased survival time of hamsters and reduced infectivity greater than 6 log orders in the solid MBM residue. Furthermore, results from our study compare for the first time prion detection by Western Blot versus an infectivity bioassay for analysis of biodiesel reaction products. We could show that biochemical analysis alone is insufficient for detection of prion infectivity after a biodiesel process

    Construction of a Global Pain Systems Network Highlights Phospholipid Signaling as a Regulator of Heat Nociception

    Get PDF
    The ability to perceive noxious stimuli is critical for an animal's survival in the face of environmental danger, and thus pain perception is likely to be under stringent evolutionary pressure. Using a neuronal-specific RNAi knock-down strategy in adult Drosophila, we recently completed a genome-wide functional annotation of heat nociception that allowed us to identify α2δ3 as a novel pain gene. Here we report construction of an evolutionary-conserved, system-level, global molecular pain network map. Our systems map is markedly enriched for multiple genes associated with human pain and predicts a plethora of novel candidate pain pathways. One central node of this pain network is phospholipid signaling, which has been implicated before in pain processing. To further investigate the role of phospholipid signaling in mammalian heat pain perception, we analysed the phenotype of PIP5Kα and PI3Kγ mutant mice. Intriguingly, both of these mice exhibit pronounced hypersensitivity to noxious heat and capsaicin-induced pain, which directly mapped through PI3Kγ kinase-dead knock-in mice to PI3Kγ lipid kinase activity. Using single primary sensory neuron recording, PI3Kγ function was mechanistically linked to a negative regulation of TRPV1 channel transduction. Our data provide a systems map for heat nociception and reinforces the extraordinary conservation of molecular mechanisms of nociception across different species. © 2012 Neely et al

    Development and Characterization of Monoclonal Antibodies to Botulinum Neurotoxin Type E

    No full text
    Botulism is a devastating disease caused by botulinum neurotoxins (BoNTs) secreted primarily by Clostridium botulinum. Mouse bioassays without co-inoculation with antibodies are the standard method for the detection of BoNTs, but are not capable of distinguishing between the different serotypes (A–G). Most foodborne intoxications are caused by serotypes BoNT/A and BoNT/B. BoNT/E outbreaks are most often observed in northern coastal regions and are associated with eating contaminated marine animals and other fishery products. Sandwich enzyme-linked immunosorbent assays (ELISAs) were developed for the detection of BoNT/E3. Monoclonal antibodies (mAbs) were generated against BoNT/E3 by immunizing with recombinant peptide fragments of the light and heavy chains of BoNT/E3. In all, 12 mAbs where characterized for binding to both the recombinant peptides and holotoxin, as well as their performance in Western blots and sandwich ELISAs. The most sensitive sandwich assay, using different mAbs for capture and detection, exhibited a limit of detection of 0.2 ng/ml in standard buffer matrix and 10 ng/mL in fish product matrices. By employing two different mAbs for capture and detection, a more standardized sandwich assay was constructed. Development of sensitive and selective mAbs to BoNT/E would help in the initial screening of potential food contamination, speeding diagnosis and reducing use of laboratory animals

    Lateral flow immunoassay (LFIA) for the detection of lethal amatoxins from mushrooms.

    No full text
    The mushroom poison that causes the most deaths is the class of toxins known as amatoxins. Current methods to sensitively and selectively detect these toxins are limited by the need for expensive equipment, or they lack accuracy due to cross-reactivity with other chemicals found in mushrooms. In this work, we report the development of a competition-based lateral flow immunoassay (LFIA) for the rapid, portable, selective, and sensitive detection of amatoxins. Our assay clearly indicates the presence of 10 ng/mL of α-AMA or γ-AMA and the method including extraction and detection can be completed in approximately 10 minutes. The test can be easily read by eye and has a presumed shelf-life of at least 1 year. From testing 110 wild mushrooms, the LFIA identified 6 out of 6 species that were known to contain amatoxins. Other poisonous mushrooms known not to contain amatoxins tested negative by LFIA. This LFIA can be used to quickly identify amatoxin-containing mushrooms
    corecore