14 research outputs found

    Hemoglobin determination with paired emitter detector diode

    Get PDF
    Two ordinary green light-emitting diodes used as light emitter and detector coupled with simple voltmeter form a complete, cost-effective prototype of a photometric hemoglobinometer. The device has been optimized for cuvette assays of total hemoglobin (Hb) in diluted blood using three different chemical methods recommended for the needs of clinical analysis (namely Drabkin, lauryl sulfate, and dithionite methods). The utility of developed device for real analytics has been validated by the assays of total Hb content in human blood. The results of analysis are fully compatible with those obtained using clinically recommended method and clinical analyzer

    Composite films of Prussian blue and N-substituted polypyrroles: covalent immobilization of enzymes and application to near infrared optical biosensing

    No full text
    We demonstrate the feasibility of optical biosensing using a material which, in essence, is a modified inorganic film to which various enzymes were covalently attached. Thin and transparent blue films composed of Prussian blue and incorporated into a network of N-substituted polypyrroles are sensitive to pH in the 5–9 range at 720 nm wavelength and can be modified with enzymes to result in the respective biosensors. Several methods of enzyme immobilization, using bifunctional crosslinking reagents, and various enzymes were tested. The best results were obtained using the one-step carbodiimide method which resulted in highly active, stable and transparent biosensor films for optical determination of urea and acetylcholine. The operational stability exceeded 1 month and even after 2 months of dry storage at room temperature the activity did not drop. The biosensors allow optical determination of the respective substrates in the millimolar concentration range

    Composite Films of Prussian Blue and N-Substituted Polypyrroles: Fabrication and Application to Optical Determination of pH

    No full text
    A new and simple chemical method for deposition of thin blue films composed of Prussian Blue and N-substituted polypyrroles on nonconductive supports is presented. It is found that only pyrroles which are difficult to polymerize can be used for the preparation of such films. The resulting composite films were examined by SEM-EDAX, vis−NIR, and IR spectroscopy. The films are stable, thin, homogeneous, and optically transparent. The absorption maxima are at 720 nm, and spectral changes can be monitored using semiconductor light sources and detectors. The composite films are shown to be suitable for optical determination of pH over the pH 5−9 range because their absorbance strongly depends on pH in the physiological pH range. However, they undergo irreversible spectral changes if exposed to pH's >9. The films represent an alternative to indicator-based pH sensor materials because they do not require a dye to be immobilized. The pH measurements are highly reproducible, reversible in the physiological range, and not affected by ionic strength, alkaline cations, and typical oxidants and reductants

    Multicommutated Flow Analysis System for Determination of Horseradish Peroxidase and Its Inhibitors

    No full text
    A fully mechanized multicommutated flow analysis (MCFA) system dedicated to determining horseradish peroxidase (HRP) activity was developed. Detection was conducted using a flow-through optoelectronic detector-constructed of paired LEDs operating according to the paired emitter-detector diode (PEDD) principle. The PEDD-MCFA system is dedicated to monitoring the enzyme-catalyzed oxidation of p-phenylenediamine (pPD) by a hydrogen peroxide. Under optimized conditions, the presented bioanalytical system was characterized by a linear response range (33.47–200 U/L) with a detection limit at 10.54 U/L HRP activity and 1.66 mV·L/U sensitivity, relatively high throughput (12 signals recordings per hour), and acceptable precision (RSD below 6%). Additionally, the utility of the developed PEDD-MCFA system for the determination of HRP inhibitors allowing the detection of selected thiols at micromolar levels, is demonstrated. The practical utility of the flow system was illustrated by the analysis of some dietary supplements containing L-cysteine, N-acetylcysteine, and L-glutathione

    Miniaturized, Planar Ion-selective Electrodes Fabricated by Means of Thick-film Technology

    No full text
    Abstract: Various planar technologies are employed for developing solid-state sensors having low cost, small size and high reproducibility; thin- and thick-film technologies are most suitable for such productions. Screen-printing is especially suitable due to its simplicity, low-cost, high reproducibility and efficiency in large-scale production. This technology enables the deposition of a thick layer and allows precise pattern control. Moreover, this is a highly economic technology, saving large amounts of the used inks. In the course of repetitions of the film-deposition procedure there is no waste of material due to additivity of this thick-film technology. Finally, the thick films can be easily and quickly deposited on inexpensive substrates. In this contribution, thick-film ion-selective electrodes based on ionophores as well as crystalline ion-selective materials dedicated for potentiometric measurements are demonstrated. Analytical parameters of these sensors are comparable with those reported for conventional potentiometric electrodes. All mentioned thick-film strip electrodes have been totally fabricated in only one, fully automated thickfilm technology, without any additional manual, chemical or electrochemical steps. In all cases simple, inexpensive, commercially available materials, i.e. flexible, plastic substrates and easily cured polymer-based pastes were used

    Miniaturized, Planar Ion-selective Electrodes Fabricated by Means of Thick-film Technology

    No full text
    Various planar technologies are employed for developing solid-state sensorshaving low cost, small size and high reproducibility; thin- and thick-film technologies aremost suitable for such productions. Screen-printing is especially suitable due to itssimplicity, low-cost, high reproducibility and efficiency in large-scale production. Thistechnology enables the deposition of a thick layer and allows precise pattern control.Moreover, this is a highly economic technology, saving large amounts of the used inks. Inthe course of repetitions of the film-deposition procedure there is no waste of material dueto additivity of this thick-film technology. Finally, the thick films can be easily and quicklydeposited on inexpensive substrates. In this contribution, thick-film ion-selective electrodesbased on ionophores as well as crystalline ion-selective materials dedicated forpotentiometric measurements are demonstrated. Analytical parameters of these sensors arecomparable with those reported for conventional potentiometric electrodes. All mentionedthick-film strip electrodes have been totally fabricated in only one, fully automated thick-film technology, without any additional manual, chemical or electrochemical steps. In allcases simple, inexpensive, commercially available materials, i.e. flexible, plastic substratesand easily cured polymer-based pastes were used

    Solid reference electrode integrated with paper-based microfluidics for potentiometric ion sensing

    No full text
    A new concept of a solid reference electrode integrated with microfluidic paper-based sampling was introduced and applied in potentiometric ion sensing. The new reference electrode consisted of an Ag/AgCl reference element (reusable) that is in contact with a disposable paper substrate (DPS) containing solid KCl. Thus, no KCl reference solution was applied during the analysis step, but the applied sample solution dissolved the solid KCl in the paper providing the electrolyte for the Ag/AgCl reference element. Such reference electrode was found to give a relatively constant potential after less than ca 1 min of equilibration. Moreover, the response of the reference electrode was not affected by concentrations of background electrolytes in the sample. Thus the proposed reference electrode was integrated with a paper-based microfluidic device and solid-contact ion-selective electrodes (ISEs) sensitive to K+, Na+ and Cl−. The optimized systems were characterized with near-Nernstian sensitivities (59.1 ± 1.5, 57.5 ± 0.5 and –56.4 ± 0.6 mV dec−1) and detection limits (10−4.1 ± 0.1, 10−3.3 ± 0.1 and 10−4.1 ± 0.1 mol dm−3) for K+, Na+ and Cl− ions, respectively. The paper-based measurement setup was favourably used for potentiometric determination of ions in environmental (wastewater sludge) and clinically relevant (sweat) samples
    corecore