95 research outputs found

    Vibrational and electronic entropy of β-cerium and γ-cerium measured by inelastic neutron scattering

    Get PDF
    Time-of-flight (TOF) inelastic neutron-scattering spectra were measured on β-cerium (double hcp) and γ-cerium (fcc) near the phase-transition temperature. Phonon densities of states (DOS) and crystal-field levels were extracted from the TOF spectra. A softening of the phonon DOS occurs in the transition from β- to γ-cerium, accounting for an increase in vibrational entropy of ΔSvibγ-β=(0.09±0.05)kB/atom. The entropy calculated from the crystal-field levels and a fit to calorimetry data from the literature were significantly larger in β-cerium than in γ-cerium below room temperature, but the difference was found to be negligible at the experimental phase-transition temperature. A contribution to the specific heat from Kondo spin fluctuations was consistent with the quasielastic magnetic scattering, but the difference between phases was negligible. To be consistent with the latent heat of the β-γ transition, the increase in vibrational entropy at the phase transition may be accompanied by a decrease in electronic entropy not associated with the crystal-field splitting or spin fluctuations. At least three sources of entropy need to be considered for the β-γ transition in cerium

    Crystal growth and magnetic structure of MnBi2Te4

    Get PDF
    Millimeter-sized MnBi2_2Te4_4 single crystals are grown out of Bi-Te flux and characterized by measuring magnetic and transport properties, scanning tunneling microscope (STM) and spectroscopy (STS). The magnetic structure of MnBi2_2Te4_4 below TN_N is determined by powder and single crystal neutron diffraction measurements. Below TN_N=24\,K, Mn2+^{2+} moments order ferromagnetically in the \textit{ab} plane but antiferromagnetically along the crystallographic \textit{c} axis. The ordered moment is 4.04(13) μB\mu_{B}/Mn at 10\,K and aligned along the crystallographic \textit{c}-axis. The electrical resistivity drops upon cooling across TN_N or when going across the metamagnetic transition in increasing fields below TN_N. A critical scattering effect was observed in the vicinity of TN_N in the temperature dependence of thermal conductivity. However, A linear temperature dependence was observed for thermopower in the temperature range 2K-300K without any anomaly around TN_N. These indicate that the magnetic order in Mn-Te layer has negligible effect on the electronic band structure, which makes possible the realization of proposed topological properties in MnBi2_2Te4_4 after fine tuning of the electronic band structure

    Character of the structural and magnetic phase transitions in the parent and electron doped BaFe2As2 compounds

    Get PDF
    We present a combined high-resolution x-ray diffraction and x-ray resonant magnetic scattering (XRMS) study of as-grown BaFe2As2. The structural/magnetic transitions must be described as a two-step process. At T_S = 134.5 K we observe the onset of a second-order structural transition from the high-temperature paramagnetic tetragonal structure to a paramagnetic orthorhombic phase, followed by a discontinuous step in the structural order parameter that is coincident with a first-order antiferromagnetic (AFM) transition at T_N = 133.75 K. These data, together with detailed high-resolution x-ray studies of the structural transition in lightly doped Ba(Fe{1-x}Co{x})2As2 and Ba(Fe{1-x}Rh{x})2As2 compounds, show that the structural and AFM transitions do, in fact, occur at slightly different temperatures in the parent BaFe2As2 compound, and evolve towards split secondorder transitions as the doping concentration is increased. We estimate the composition for the tricritical point for Co-doping and employ a mean-field approach to show that our measurements can be explained by the inclusion of an anharmonic term in the elastic free energy and magneto-elastic coupling in the form of an emergent Ising-nematic degree of freedom.Comment: 10 pages, 11 figures; accepted for publication in Phys. Rev.

    Effect of carbon addition on the single crystalline magnetostriction of Fe-X (X = Al and Ga) alloys

    Get PDF
    The effect of carbon addition on the magnetostriction of Fe–Ga and Fe–Al alloys was investigated and is summarized in this study. It was found that the addition of carbon generally increased the magnetostriction over binary alloys of Fe–Ga and Fe–Al systems. The formation of carbide in the Fe–Ga–C alloys with a composition near D03 phase region decreased the magnetostriction drastically. Fe–Al–C and Fe–Ga–C alloys responded differently to thermal treatments; the magnetostriction in the quenched Fe–Al–C alloys is equal to or slightly lower than that of the slow cooled as is observed in binary Fe–Al alloy; in contrast, the magnetostriction is generally higher in quenched Fe–Ga–C alloys than slow cooled condition, consistent with the behavior of binary alloys of Fe–Ga. A significant increase in magnetostriction between 25% and 165% depending on the phase region in Fe–Ga–C alloys by quenching was observed in the A2+D03 two-phase region and D03 single phase region

    Low temperature heat capacity of Fe1−xGax alloys with large magnetostriction

    Get PDF
    The low temperature heat capacity Cp of Fe1−xGax alloys with large magnetostriction has been investigated. The data were analyzed in the standard way using electron (γT) and phonon (βT3) contributions. The Debye temperature ΘD decreases approximately linearly with increasing Ga concentration, consistent with previous resonant ultrasound measurements and measured phonon dispersion curves. Calculations of ΘD from lattice dynamical models and from measured elastic constants C11,C12, and C44 are in agreement with the measured data. The linear coefficient of electronic specific heat γ remains relatively constant as the Ga concentration increases, despite the fact that the magnetoelastic coupling increases. Band structure calculations show that this is due to the compensation of majority and minority spin states at the Fermi level

    Magnetic excitations in underdoped Ba(Fe1-xCox)2As2 with x=0.047

    Get PDF
    The magnetic excitations in the paramagnetic-tetragonal phase of underdoped Ba(Fe0.953Co0.047)2As2, as measured by inelastic neutron scattering, can be well described by a phenomenological model with purely diffusive spin dynamics. At low energies, the spectrum around the magnetic ordering vector Q_AFM consists of a single peak with elliptical shape in momentum space. At high energies, this inelastic peak is split into two peaks across the direction perpendicular to Q_AFM. We use our fittings to argue that such a splitting is not due to incommensurability or propagating spin-wave excitations, but is rather a consequence of the anisotropies in the Landau damping and in the magnetic correlation length, both of which are allowed by the tetragonal symmetry of the system. We also measure the magnetic spectrum deep inside the magnetically-ordered phase, and find that it is remarkably similar to the spectrum of the paramagnetic phase, revealing the strongly overdamped character of the magnetic excitations.Comment: 12 pages, 7 figure
    • …
    corecore