19 research outputs found

    Analysis of Coaxial Soil Cell in Reflection and Transmission

    Get PDF
    Accurate measurement of moisture content is a prime requirement in hydrological, geophysical and biogeochemical research as well as for material characterization and process control. Within these areas, accurate measurements of the surface area and bound water content is becoming increasingly important for providing answers to many fundamental questions ranging from characterization of cotton fiber maturity, to accurate characterization of soil water content in soil water conservation research to bio-plant water utilization to chemical reactions and diffusions of ionic species across membranes in cells as well as in the dense suspensions that occur in surface films. In these bound water materials, the errors in the traditional time-domain-reflectometer, ā€œTDRā€, exceed the range of the full span of the materialā€™s permittivity that is being measured. Thus, there is a critical need to re-examine the TDR system and identify where the errors are to direct future research. One promising technique to address the increasing demands for higher accuracy water content measurements is utilization of electrical permittivity characterization of materials. This technique has enjoyed a strong following in the soil-science and geological community through measurements of apparent permittivity via time-domain-reflectometery as well in many process control applications. Recent research however, is indicating a need to increase the accuracy beyond that available from traditional TDR. The most logical pathway then becomes a transition from TDR based measurements to network analyzer measurements of absolute permittivity that will remove the adverse effects that high surface area soils and conductivity impart onto the measurements of apparent permittivity in traditional TDR applications. This research examines the theoretical basis behind the coaxial probe, from which the modern TDR probe originated from, to provide a basis on which to perform absolute permittivity measurements. The research reveals currently utilized formulations in accepted techniques for permittivity measurements which violate the underlying assumptions inherent in the basic models due to the TDR acting as an antenna by radiating energy off the end of the probe, rather than returning it back to the source as is the current assumption. To remove the effects of radiation from the experimental results obtain herein, this research utilized custom designed coaxial probes of various diameters and probe lengths by which to test the coaxial cell measurement technique for accuracy in determination of absolute permittivity. In doing so, the research reveals that the basic models available in the literature all omitted a key correction factor that is hypothesized by this research as being most likely due to fringe capacitance. To test this theory, a Poisson model of a coaxial cell was formulated to calculate the effective extra length provided by the fringe capacitance which is then used to correct the experimental results such that experimental measurements utilizing differing coaxial cell diameters and probe lengths, upon correction with the Poisson model derived correction factor, all produce the same results thereby lending support for the use of an augmented measurement technique, described herein, for measurement of absolute permittivity, as opposed to the traditional TDR measurement of apparent permittivity

    Irrigation Analysis Based on Long-Term Weather Data

    No full text
    Irrigation management is based upon delivery of water to a crop in the correct amount and time, and the cropā€™s water need is determined by calculating evapotranspiration (ET) using weather data. In 1994, an ET-network was established in the Texas High Plains to manage irrigation on a regional scale. Though producers used the ET-network, by 2010 public access was discontinued. Why did producers allow a valuable irrigation-management tool to be eliminated? Our objective was to analyze the effect of declining well capacities on the usefulness of cotton ET (ETc) for irrigation. Thirty years (1975ā€“2004) of daily ETc data were used to compare irrigation demand vs. irrigation responses at four locations, analyzed for multiple years and range of well capacities for three irrigation-intervals. Results indicated that when well capacities declined to the point that over-irrigation was not possible, the lower well capacities reduced the value of ETc in terms of the number of irrigations and total amount of water applied. At well capacities <1514 LĀ·mināˆ’1 the fraction of irrigations for which ETc information was used to determine the irrigation amount was <35% across years and irrigation intervals. The value of an ETc-based irrigation may fall into disuse when irrigation-water supplies decline

    System for High Throughput Water Extraction from Soil Material for Stable Isotope Analysis of Water Timothy

    No full text
    ABSTRACT A major limitation in the use of stable isotope of water in ecological studies is the time that is required to extract water from soil and plant samples. Using vacuum distillation the extraction time can be less than one hour per sample. Therefore, assembling a distillation system that can process multiple samples simultaneously is advantageous and necessary for ecological or hydrological investigations. Presented here is a vacuum distillation apparatus, having six ports, that can process up to 30 samples per day. The distillation system coupled with the Los Gatos Research DLT-100 Liquid Water Isotope Analyzer is capable of analyzing all of the samples that are generated by vacuum distillation. These two systems allow larger sampling rates making investigations into water movement through an ecological system possible at higher temporal and spatial resolution

    Seasonal changes of groundwater quality in the Ogallala Aquifer

    No full text
    The Ogallala Aquifer extends beneath eight states in the Great Plains region of North America. It stretches from Texas to South Dakota and is among the largest aquifers in the world. In Texas, extraction of groundwater, primarily for cropland irrigation, far exceeds recharge resulting in a significant decline of the water table. In the Texas High Plains, this decline prompted restrictions set by a local water conservation agency in 2009 stating that in 50 years about 50% of the saturated thickness of the Ogallala Aquifer should be preserved. However, this restriction only addressed the quantity and not the quality of the remaining water. The quality of water extracted from the Ogallala Aquifer has been observed to change over time, especially over the length of a cropā€™s growing season. We measured water quality over a three-year period using an electrical conductivity sensor and measured depth to water at 20 locations across five counties in the Texas High Plains. Results show that when wells are actively pumping, water quality can change in complex and unpredictable ways. In some cases, water quality declined and in others water quality improved. This result has prompted us to further investigate the mechanisms involved in observed seasonal water quality changes

    Evaluation of Stable Isotopes of Water to Determine Rainwater Infiltration in Soils under Conservation Reserve Program

    No full text
    Abstract The Conservation Reserve Program (CRP) is a USDA program introduced in 1985 to reduce soil erosion by increasing vegetative cover of highly erodible land. Participation in the CRP is done via contracts (10 -15 years in length) and currently the total area of land under contract is set to decline as per the 2014 Farm Bill. The Texas High Plains (THP) leads the US with >900,000 ha enrolled in CRP. A potential longterm benefit of CRP is to increase soil organic matter and to improve soil structure leading to increased water infiltration. Our objective was to evaluate the feasibility of using stable isotopes of water to measure and compare infiltration of rain in land under CRP management to land under continuous dryland cotton in the THP. For this purpose we selected two sites, with soils in the Amarillo series, enrolled in CRP, one for 25 years and the second site for 22 years. Results from several rain events showed that stable isotopes of water are a method that can be used to evaluate the depth of rainwater infiltration for soils under CRP and dryland management

    Cotton Water Use Efficiency under Two Different Deficit Irrigation Scheduling Methods

    No full text
    Declines in Ogallala aquifer levels used for irrigation has prompted research to identify methods for optimizing water use efficiency (WUE) of cotton (Gossypium hirsutum L). In this experiment, conducted at Lubbock, TX, USA in 2014, our objective was to test two canopy temperature based stress indices, each at two different irrigation trigger set points: the Stress Time (ST) method with irrigation triggers set at 5.5 (ST_5.5) and 8.5 h (ST_8.5) and the Crop Water Stress Index (CWSI) method with irrigation triggers set at 0.3 (CWSI_0.3) and 0.6 (CWSI_0.6). When these irrigation triggers were exceeded on a given day, the crop was deficit irrigated with 5 mm of water via subsurface drip tape. Also included in the experimental design were a well-watered (WW) control irrigated at 110% of potential evapotranspiration and a dry land (DL) treatment that relied on rainfall only. Seasonal crop water use ranged from 353 to 625 mm across these six treatments. As expected, cotton lint yield increased with increasing crop water use but lint yield WUE displayed asignificant (p ā‰¤ 0.05) peak near 3.6 to 3.7 kg haāˆ’1 mmāˆ’1 for the ST_5.5 and CWSI_0.3 treatments, respectively. Our results suggest that WUE may be optimized in cotton with less water than that needed for maximum lint yield
    corecore