181 research outputs found

    Quantized Lattice Dynamic Effects on the Spin-Peierls Transition

    Full text link
    The density matrix renormalization group method is used to investigate the spin-Peierls transition for Heisenberg spins coupled to quantized phonons. We use a phonon spectrum that interpolates between a gapped, dispersionless (Einstein) limit to a gapless, dispersive (Debye) limit. A variety of theoretical probes are used to determine the quantum phase transition, including energy gap crossing, a finite size scaling analysis, bond order auto-correlation functions, and bipartite quantum entanglement. All these probes indicate that in the antiadiabatic phonon limit a quantum phase transition of the Berezinskii-Kosterlitz-Thouless type is observed at a non-zero spin-phonon coupling, gcg_{\text c}. An extrapolation from the Einstein limit to the Debye limit is accompanied by an increase in gcg_{\text c} for a fixed optical (q=πq=\pi ) phonon gap. We therefore conclude that the dimerized ground state is more unstable with respect to Debye phonons, with the introduction of phonon dispersion renormalizing the effective spin-lattice coupling for the Peierls-active mode. We also show that the staggered spin-spin and phonon displacement order parameters are unreliable means of determining the transition.Comment: To be published in Phys. Rev.

    Synthetic Light-Activated Ion Channels for Optogenetic Activation and Inhibition

    Get PDF
    Optogenetic manipulation of cells or living organisms became widely used in neuroscience following the introduction of the light-gated ion channel channelrhodopsin-2 (ChR2). ChR2 is a non-selective cation channel, ideally suited to depolarize and evoke action potentials in neurons. However, its calcium (Ca2+) permeability and single channel conductance are low and for some applications longer-lasting increases in intracellular Ca2+ might be desirable. Moreover, there is need for an efficient light-gated potassium (K+) channel that can rapidly inhibit spiking in targeted neurons. Considering the importance of Ca2+ and K+ in cell physiology, light-activated Ca2+-permeant and K+-specific channels would be welcome additions to the optogenetic toolbox. Here we describe the engineering of novel light-gated Ca2+-permeant and K+-specific channels by fusing a bacterial photoactivated adenylyl cyclase to cyclic nucleotide-gated channels with high permeability for Ca2+ or for K+, respectively. Optimized fusion constructs showed strong light-gated conductance in Xenopus laevis oocytes and in rat hippocampal neurons. These constructs could also be used to control the motility of Drosophila melanogaster larvae, when expressed in motoneurons. Illumination led to body contraction when motoneurons expressed the light-sensitive Ca2+-permeant channel, and to body extension when expressing the light-sensitive K+ channel, both effectively and reversibly paralyzing the larvae. Further optimization of these constructs will be required for application in adult flies since both constructs led to eclosion failure when expressed in motoneurons

    The Ig cell adhesion molecule Basigin controls compartmentalization and vesicle release at Drosophila melanogaster synapses

    Get PDF
    Synapses can undergo rapid changes in size as well as in their vesicle release function during both plasticity processes and development. This fundamental property of neuronal cells requires the coordinated rearrangement of synaptic membranes and their associated cytoskeleton, yet remarkably little is known of how this coupling is achieved. In a GFP exon-trap screen, we identified Drosophila melanogaster Basigin (Bsg) as an immunoglobulin domain-containing transmembrane protein accumulating at periactive zones of neuromuscular junctions. Bsg is required pre- and postsynaptically to restrict synaptic bouton size, its juxtamembrane cytoplasmic residues being important for that function. Bsg controls different aspects of synaptic structure, including distribution of synaptic vesicles and organization of the presynaptic cortical actin cytoskeleton. Strikingly, bsg function is also required specifically within the presynaptic terminal to inhibit nonsynchronized evoked vesicle release. We thus propose that Bsg is part of a transsynaptic complex regulating synaptic compartmentalization and strength, and coordinating plasma membrane and cortical organization

    Transport Properties of Multiple Quantum Dots Arranged in Parallel: Results from the Bethe Ansatz

    Full text link
    In this paper we analyze transport through a double dot system connected to two external leads. Imagining each dot possessing a single active level, we model the system through a generalization of the Anderson model. We argue that this model is exactly solvable when certain constraints are placed upon the dot Coulomb charging energy, the dot-lead hybridization, and the value of the applied gate voltage. Using this exact solvability, we access the zero temperature linear response conductance both in and out of the presence of a Zeeman field. We are also able to study the finite temperature linear response conductance. We focus on universal behaviour and identify three primary features in the transport of the dots: i) a so-called RKKY Kondo effect; ii) a standard Kondo effect; and iii) interference phenomena leading to sharp variations in the conductance including conductance zeros. We are able to use the exact solvability of the dot model to characterize these phenomena quantitatively. While here we primarily consider a double dot system, the approach adopted applies equally well to N-dot systems.Comment: 28 pages, 10 figures; references added in v

    Mechanical vibrations of magnetically levitated viscoelastic droplets

    Get PDF
    The mechanical vibrations of magnetically levitated droplets were investigated using a simple optical deflection technique. Droplets of water and a water-based solution of poly(acrylamide-co-acrylic acid) were levitated in the bore of a superconducting magnet and perturbed with a short puff of air. Centre of mass and surface vibrations were monitored using laser light refracted through the droplet, focussed on to the end of an optical fiber and detected using a photodiode. Time dependent variations in the voltage generated by the photodiode were Fourier transformed to obtain the frequency and spectral width of the drops' mechanical resonances. A simple theory of drop vibration was developed to extract the rheological properties of the droplets from these quantities. The resulting values of G' and G" that were extracted were found to be in good agreement with values obtained using conventional rheology techniques

    Synthetic light-activated ion channels for optogenetic activation and inhibition

    Get PDF
    Optogenetic manipulation of cells or living organisms became widely used in neuroscience following the introduction of the light-gated ion channel channelrhodopsin-2 (ChR2). ChR2 is a non-selective cation channel, ideally suited to depolarize and evoke action potentials in neurons. However, its calcium (Ca22+^{2+}) permeability and single channel conductance are low and for some applications longer-lasting increases in intracellular Ca2+^{2+} might be desirable. Moreover, there is need for an efficient light-gated potassium (K+^{+}) channel that can rapidly inhibit spiking in targeted neurons. Considering the importance of Ca2+^{2+} and K+^{+} in cell physiology, light-activated Ca2+^{2+}-permeant and K+^{+}-specific channels would be welcome additions to the optogenetic toolbox. Here we describe the engineering of novel light-gated Ca2+^{2+}-permeant and K+^{+}-specific channels by fusing a bacterial photoactivated adenylyl cyclase to cyclic nucleotide-gated channels with high permeability for Ca2+^{2+} or for K+^{+}, respectively. Optimized fusion constructs showed strong light-gated conductance in Xenopus laevis oocytes and in rat hippocampal neurons. These constructs could also be used to control the motility of Drosophila melanogaster larvae, when expressed in motoneurons. Illumination led to body contraction when motoneurons expressed the light-sensitive Ca2+^{2+}-permeant channel, and to body extension when expressing the light-sensitive K+^{+} channel, both effectively and reversibly paralyzing the larvae. Further optimization of these constructs will be required for application in adult flies since both constructs led to eclosion failure when expressed in motoneurons

    Maturation of active zone assembly by Drosophila Bruchpilot

    Get PDF
    Synaptic vesicles fuse at active zone (AZ) membranes where Ca2+ channels are clustered and that are typically decorated by electron-dense projections. Recently, mutants of the Drosophila melanogaster ERC/CAST family protein Bruchpilot (BRP) were shown to lack dense projections (T-bars) and to suffer from Ca2+ channel–clustering defects. In this study, we used high resolution light microscopy, electron microscopy, and intravital imaging to analyze the function of BRP in AZ assembly. Consistent with truncated BRP variants forming shortened T-bars, we identify BRP as a direct T-bar component at the AZ center with its N terminus closer to the AZ membrane than its C terminus. In contrast, Drosophila Liprin-α, another AZ-organizing protein, precedes BRP during the assembly of newly forming AZs by several hours and surrounds the AZ center in few discrete punctae. BRP seems responsible for effectively clustering Ca2+ channels beneath the T-bar density late in a protracted AZ formation process, potentially through a direct molecular interaction with intracellular Ca2+ channel domains
    corecore