5 research outputs found

    Calcium Sulfate and Platelet-Rich Plasma make a novel osteoinductive biomaterial for bone regeneration

    Get PDF
    BACKGROUND: With the present study we introduce a novel and simple biomaterial able to induce regeneration of bone. We theorized that nourishing a bone defect with calcium and with a large amount of activated platelets may initiate a series of biological processes that culminate in bone regeneration. Thus, we engineered CS-Platelet, a biomaterial based on the combination of Calcium Sulfate and Platelet-Rich Plasma in which Calcium Sulfate also acts as an activator of the platelets, therefore avoiding the need to activate the platelets with an agonist. METHODS: First, we tested CS-Platelet in heterotopic (muscle) and orthotopic (bone) bone regeneration bioassays. We then utilized CS-Platelet in a variety of dental and craniofacial clinical cases, where regeneration of bone was needed. RESULTS: The heterotopic bioassay showed formation of bone within the muscular tissue at the site of the implantation of CS-Platelet. Results of a quantitative orthotopic bioassay based on the rat calvaria critical size defect showed that only CS-Platelet and recombinant human BMP2 were able to induce a significant regeneration of bone. A non-human primate orthotopic bioassay also showed that CS-Platelet is completely resorbable. In all human clinical cases where CS-Platelet was used, a complete bone repair was achieved. CONCLUSION: This study showed that CS-Platelet is a novel biomaterial able to induce formation of bone in heterotopic and orthotopic sites, in orthotopic critical size bone defects, and in various clinical situations. The discovery of CS-Platelet may represent a cost-effective breakthrough in bone regenerative therapy and an alternative or an adjuvant to the current treatments
    corecore