46 research outputs found

    A thin commentary on a fat receptor

    Get PDF

    An implantable microdevice to perform high-throughput in vivo drug sensitivity testing in tumors

    Get PDF
    Current anticancer chemotherapy relies on a limited set of in vitro or indirect prognostic markers of tumor response to available drugs. A more accurate analysis of drug sensitivity would involve studying tumor response in vivo. To this end, we have developed an implantable device that can perform drug sensitivity testing of several anticancer agents simultaneously inside the living tumor. The device contained reservoirs that released microdoses of single agents or drug combinations into spatially distinct regions of the tumor. The local drug concentrations were chosen to be representative of concentrations achieved during systemic treatment. Local efficacy and drug concentration profiles were evaluated for each drug or drug combination on the device, and the local efficacy was confirmed to be a predictor of systemic efficacy in vivo for multiple drugs and tumor models. Currently, up to 16 individual drugs or combinations can be assessed independently, without systemic drug exposure, through minimally invasive biopsy of a small region of a single tumor. This assay takes into consideration physiologic effects that contribute to drug response by allowing drugs to interact with the living tumor in its native microenvironment. Because these effects are crucial to predicting drug response, we envision that these devices will help identify optimal drug therapy before systemic treatment is initiated and could improve drug response prediction beyond the biomarkers and in vitro and ex vivo studies used today. These devices may also be used in clinical drug development to safely gather efficacy data on new compounds before pharmacological optimization.National Cancer Institute (U.S.) (Innovative Molecular Analysis Technologies Program R21-CA177391)Kibur Medical, Inc

    Comparison of salivary proteome of children with different sensitivities for bitter and sweet tastes: association with body mass index

    Get PDF
    Background/objectives: Oral sensorial perception is a key aspect in food choices and knowing the mechanisms modulating such perception is of major importance in the context of child obesity, which is reaching high rates in Mediterranean countries. Salivary proteome has been linked to taste sensitivity in adults. The aim of this study was to search for differences in salivary proteomes of children with different bitter or sweet taste sensitivities and to assess if these potential differences are associated with their body mass index percentile (BMI percentile). Subjects/methods: 387 children aged 8-9 years old were assessed for BMI percentile and classified according to their sensitivity to bitter and sweet tastes, according to their caffeine and sucrose detection thresholds, respectively. Saliva protein composition was compared among taste sensitivity groups, taking into account BMI percentile and gender, using gel-based proteomics approaches, coupled to mass spectrometry for protein identification. Results: Among the salivary proteins related to bitter taste sensitivity, higher levels of cystatins were observed in bitter-sensitive children, in the case of those of normal weight, and in bitter low-sensitive, in the case of overweight children. For sweetness, the relationship between saliva and taste perception was also dependent on BMI percentile, with several proteins (including salivary cystatins) differing between taste sensitivity groups, with disparities arising between normal-weight and overweight children. Cystatin isoforms A, B and SA were observed to be considerably increased in saliva from obese children. Conclusions: Salivary proteome is related with sensitivities to bitter and sweet tastes in children, but the association is dependent on BMI percentile and gender

    Integrated genomic characterization of pancreatic ductal adenocarcinoma

    Get PDF
    We performed integrated genomic, transcriptomic, and proteomic profiling of 150 pancreatic ductal adenocarcinoma (PDAC) specimens, including samples with characteristic low neoplastic cellularity. Deep whole-exome sequencing revealed recurrent somatic mutations in KRAS, TP53, CDKN2A, SMAD4, RNF43, ARID1A, TGFβR2, GNAS, RREB1, and PBRM1. KRAS wild-type tumors harbored alterations in other oncogenic drivers, including GNAS, BRAF, CTNNB1, and additional RAS pathway genes. A subset of tumors harbored multiple KRAS mutations, with some showing evidence of biallelic mutations. Protein profiling identified a favorable prognosis subset with low epithelial-mesenchymal transition and high MTOR pathway scores. Associations of non-coding RNAs with tumor-specific mRNA subtypes were also identified. Our integrated multi-platform analysis reveals a complex molecular landscape of PDAC and provides a roadmap for precision medicine

    A thin commentary on a fat receptor

    No full text
    corecore