64 research outputs found

    Hierarchical Cont-Bouchaud model

    Full text link
    We extend the well-known Cont-Bouchaud model to include a hierarchical topology of agent's interactions. The influence of hierarchy on system dynamics is investigated by two models. The first one is based on a multi-level, nested Erdos-Renyi random graph and individual decisions by agents according to Potts dynamics. This approach does not lead to a broad return distribution outside a parameter regime close to the original Cont-Bouchaud model. In the second model we introduce a limited hierarchical Erdos-Renyi graph, where merging of clusters at a level h+1 involves only clusters that have merged at the previous level h and we use the original Cont-Bouchaud agent dynamics on resulting clusters. The second model leads to a heavy-tail distribution of cluster sizes and relative price changes in a wide range of connection densities, not only close to the percolation threshold.Comment: 10 pages, 6 figure

    Comment on "Tracer Diffusion in a Dislocated Lamellar System"

    Get PDF
    A Comment on the Letter by Victor Gurarie and Alexander E. Lobkovsky, Phys. Rev. Lett. 88, 178301 (2002). The authors of the Letter offer a Reply

    Chirality-Biased Point Defects Dynamics on a Disclination Line in a Nematic Liquid Crystal

    Get PDF
    Chiral additives in the nematic liquid crystal can alter the dynamics of point defects moving on a disclination line. They exert a constant force on defects, leading to the bimodal distribution of distances between them at long times. The evolution of the system of defects in the presence of chiral additives provides a very direct proof of the existence of repulsive forces between the defects at large distances. We find that addition of a sufficient amount of chiral compound removes all point defects from the system. The process is studied in the system of 8CB (4-n-octyl-4 '-cyanobiphenyl) doped with the chiral compound S811 (from Merck Co.) and in the computer simulations

    Role of electrostatics in the texture of islands in free standing ferroelectric liquid crystal films

    Full text link
    Curved textures of ferroelectric smectic C* liquid crystals produce space charge when they involve divergence of the spontaneous polarization field. Impurity ions can partially screen this space charge, reducing long range interactions to local ones. Through studies of the textures of islands on very thin free-standing smectic films, we see evidence of this effect, in which materials with a large spontaneous polarization have static structures described by a large effective bend elastic constant. To address this issue, we calculated the electrostatic free energy of a free standing film of ferroelectric liquid crystal, showing how the screened coulomb interaction contributes a term to the effective bend elastic constant, in the static long wavelength limit. We report experiments which support the main features of this model

    Parameters of state in the global thermodynamics of binary ideal gas mixtures in a stationary heat flow

    Full text link
    We formulate the first law of global thermodynamics for stationary states of the binary ideal gas mixture subjected to heat flow. We map the non-uniform system onto the uniform one and show that the internal energy U(S,V,N1,N2,f1,f2)U(S^*,V,N_1,N_2,f_1^*,f_2^*) is the function of the following parameters of state: a non-equilibrium entropy SS^*, volume VV, number of particles of the first component, N1N_1, number of particles of the second component N2N_2 and the renormalized degrees of freedom. The parameters f1,f2f_1^*,f_2^*, N1,N2N_1, N_2 satisfy the relation x1f1/f1+x2f2/f2=1x_1f_1^*/f_1+x_2f_2^*/f_2=1 (f1f_1, where xix_i is the fraction of ii component, and f2f_2 are the degrees of freedom for each component respectively). Thus only 5 parameters of state describe the non-equilibrium state of the binary mixture in the heat flow. We calculate the non-equilibrium entropy SS^{*} and new thermodynamic parameters of state f1,f2f_1^*, f_2^* explicitly. The latter are responsible for heat generation due to the concentration gradients. The theory reduces to equilibrium thermodynamics, when the heat flux goes to zero. As in equilibrium thermodynamics, the steady-state fundamental equation also leads to the thermodynamic Maxwell relations for measurable steady-state properties.Comment: 8 pages, 1 figur

    Structural Properties of the Sliding Columnar Phase in Layered Liquid Crystalline Systems

    Full text link
    Under appropriate conditions, mixtures of cationic and neutral lipids and DNA in water condense into complexes in which DNA strands form local 2D smectic lattices intercalated between lipid bilayer membranes in a lamellar stack. These lamellar DNA-cationic-lipid complexes can in principle exhibit a variety of equilibrium phases, including a columnar phase in which parallel DNA strands from a 2D lattice, a nematic lamellar phase in which DNA strands align along a common direction but exhibit no long-range positional order, and a possible new intermediate phase, the sliding columnar (SC) phase, characterized by a vanishing shear modulus for relative displacement of DNA lattices but a nonvanishing modulus for compressing these lattices. We develop a model capable of describing all phases and transitions among them and use it to calculate structural properties of the sliding columnar phase. We calculate displacement and density correlation functions and x-ray scattering intensities in this phase and show, in particular, that density correlations within a layer have an unusual exp(const.ln2r)\exp(- {\rm const.} \ln^2 r) dependence on separation r. We investigate the stability of the SC phase with respect to shear couplings leading to the columnar phase and dislocation unbinding leading to the lamellar nematic phase. For models with interactions only between nearest neighbor planes, we conclude that the SC phase is not thermodynamically stable. Correlation functions in the nematic lamellar phase, however, exhibit SC behavior over a range of length scalesComment: 28 pages, 4 figure

    Continuous non-equilibrium transition driven by the heat flow

    Get PDF
    We discovered an out-of-equilibrium transition in the ideal gas between two walls, divided by an inner, adiabatic, movable wall. The system is driven out-of-equilibrium by supplying energy directly into the volume of the gas. At critical heat flux, we have found a continuous transition to the state with a low-density, hot gas on one side of the movable wall and a dense, cold gas on the other side. Molecular dynamic simulations of the soft-sphere fluid confirm the existence of the transition in the interacting system. We introduce a stationary state Helmholtz-like function whose minimum determines the stable positions of the internal wall. This transition can be used as a paradigm of transitions in stationary states and the Helmholtz-like function as a paradigm of the thermodynamic description of these states

    Polydispersity and ordered phases in solutions of rodlike macromolecules

    Full text link
    We apply density functional theory to study the influence of polydispersity on the stability of columnar, smectic and solid ordering in the solutions of rodlike macromolecules. For sufficiently large length polydispersity (standard deviation σ>0.25\sigma>0.25) a direct first-order nematic-columnar transition is found, while for smaller σ\sigma there is a continuous nematic-smectic and first-order smectic-columnar transition. For increasing polydispersity the columnar structure is stabilized with respect to solid perturbations. The length distribution of macromolecules changes neither at the nematic-smectic nor at the nematic-columnar transition, but it does change at the smectic-columnar phase transition. We also study the phase behaviour of binary mixtures, in which the nematic-smectic transition is again found to be continuous. Demixing according to rod length in the smectic phase is always preempted by transitions to solid or columnar ordering.Comment: 13 pages (TeX), 2 Postscript figures uuencode
    corecore