5 research outputs found
Stereoselective synthesis of trans-fused iridoid lactones and their identification in the parasitoid wasp Alloxysta victrix, Part II: iridomyrmecins
Abstract Following our earlier approach to the synthesis of dihydronepetalactones, all eight stereoisomers of trans-fused iridomyrmecins were synthesized starting from the enantiomers of limonene. Combined gas chromatography and mass spectrometry including enantioselective gas chromatography revealed that volatiles released by the endohyperparasitoid wasp Alloxysta victrix contain (4S,4aR,7S,7aR)-iridomyrmecin of 95-97% ee and stereochemically pure (4S,4aS,7R,7aS)-iridomyrmecin as a minor component. 125
Osmium-Catalyzed Olefin Dihydroxylation and Aminohydroxylation in the Second Catalytic Cycle.
Mutualistic intracellular symbiosis between bacteria and insects is a widespread phenomenon that has contributed to the global success of insects. The symbionts, by provisioning nutrients lacking from diets, allow various insects to occupy or dominate ecological niches that might otherwise be unavailable. One such insect is the glassy-winged sharpshooter (Homalodisca coagulata), which feeds on xylem fluid, a diet exceptionally poor in organic nutrients. Phylogenetic studies based on rRNA have shown two types of bacterial symbionts to be coevolving with sharpshooters: the gamma-proteobacterium Baumannia cicadellinicola and the Bacteroidetes species Sulcia muelleri. We report here the sequencing and analysis of the 686,192-base pair genome of B. cicadellinicola and approximately 150 kilobase pairs of the small genome of S. muelleri, both isolated from H. coagulata. Our study, which to our knowledge is the first genomic analysis of an obligate symbiosis involving multiple partners, suggests striking complementarity in the biosynthetic capabilities of the two symbionts: B. cicadellinicola devotes a substantial portion of its genome to the biosynthesis of vitamins and cofactors required by animals and lacks most amino acid biosynthetic pathways, whereas S. muelleri apparently produces most or all of the essential amino acids needed by its host. This finding, along with other results of our genome analysis, suggests the existence of metabolic codependency among the two unrelated endosymbionts and their insect host. This dual symbiosis provides a model case for studying correlated genome evolution and genome reduction involving multiple organisms in an intimate, obligate mutualistic relationship. In addition, our analysis provides insight for the first time into the differences in symbionts between insects (e.g., aphids) that feed on phloem versus those like H. coagulata that feed on xylem. Finally, the genomes of these two symbionts provide potential targets for controlling plant pathogens such as Xylella fastidiosa, a major agroeconomic problem, for which H. coagulata and other sharpshooters serve as vectors of transmission. © 2006 Wu et al
Stereoselective synthesis of trans-fused iridoid lactones and their identification in the parasitoid wasp Alloxysta victrix, Part I: Dihydronepetalactones
Starting from the enantiomers of limonene, all eight stereoisomers of trans-fused dihydronepetalactones were synthesized. Key compounds were pure stereoisomers of 1-acetoxymethyl-2-methyl-5-(2-hydroxy-1-methylethyl)-1-cyclopentene. The stereogenic center of limonene was retained at position 4a of the target compounds and used to stereoselectively control the introduction of the other chiral centers during the synthesis. Basically, this approach could also be used for the synthesis of enantiomerically pure trans-fused iridomyrmecins. Using synthetic reference samples, the combination of enantioselective gas chromatography and mass spectrometry revealed that volatiles released by the endohyperparasitoid wasp Alloxysta victrix contain the enantiomerically pure trans-fused (4R,4aR,7R,7aS)-dihydronepetalactone as a minor component, showing an unusual (R)-configured stereogenic center at position 7
Inhibition of protein kinase CK2 expression and activity blocks tumor cell growth
Abstract Protein kinase CK2 (CK2) is a highly conserved and ubiquitous serine/threonine kinase. It is a multifunctional and pleiotropic protein kinase implicated in the regulation of cell proliferation, survival, and differentiation. Deregulation of CK2 is observed in a wide variety of tumors. It has been the focus of intensive research efforts to establish the cause-effect relationship between CK2 and neoplastic growth. Here, we further validate the role of CK2 in cancer cell growth using siRNA approach. We also screened a library of more than 200,000 compounds and identified several molecules, which inhibit CK2 with IC 50 \ 1 lM. The binding mode of a representative compound with maize CK2 was determined. In addition, the cellular activity of the compounds was demonstrated by their inhibition of phosphorylation of PTEN Ser370 in HCT116 cells. Treatment of a variety of cancer cell lines with the newly identified CK2 inhibitor significantly blocked cell growth with IC 50 s as low as 300 nM