56 research outputs found

    TP53 Mutations in Low-Risk Myelodysplastic Syndromes With del(5q) Predict Disease Progression

    No full text
    Purpose To determine the frequency of TP53 mutations and the level of p53 protein expression by immunohistochemistry (IHC) in low-risk myelodysplastic syndromes (MDS) with del(5q) and to assess their impact on disease progression. Patients and Methods Pre- and postprogression bone marrow (BM) samples from 55 consecutive patients with International Prognostic Scoring System low risk (n = 32) or intermediate-1 risk (n = 23) were studied by next-generation sequencing of TP53. IHC for p53 was performed on 148 sequential BM samples. Results TP53 mutations with a median clone size of 11% (range, 1% to 54%) were detected in 10 patients (18%) already at an early phase of the disease. Mutations were equally common in low-risk and intermediate-1–risk patients and were associated with evolution to acute myeloid leukemia (5 of 10 v 7 of 45; P = .045). Nine of 10 patients carrying mutations showed more than 2% BM progenitors with strong p53 staining. The probability of a complete cytogenetic response to lenalidomide was lower in mutated patients (0 of 7 v 12 of 24; P = .024). Conclusion By using sensitive deep-sequencing technology, we demonstrated that TP53 mutated populations may occur at an early disease stage in almost a fifth of low-risk MDS patients with del(5q). Importantly, mutations were present years before disease progression and were associated with an increased risk of leukemic evolution. TP53 mutations could not be predicted by common clinical features but were associated with p53 overexpression. Our findings indicate a previously unrecognized heterogeneity of the disease which may significantly affect clinical decision making. </jats:sec

    Involvement and functional impairment of the CD34(+)CD38(-)Thy-1(+) hematopoietic stem cell pool in myelodysplastic syndromes with trisomy 8.

    No full text
    Clonality studies of mature cells suggest that the primary transformation event in myelodysplastic syndrome (MDS) most frequently occurs in a myeloid-restricted progenitor, a hypothesis supported by recent studies of purified CD34(+)Thy1(+) hematopoietic stem cells (HSCs) in cases with trisomy 8 (+8). In contrast, we recently demonstrated that a lymphomyeloid HSC is the target for transformation in MDS cases with del(5q), potentially reflecting heterogeneity within MDS. However, since +8 is known to frequently be a late event in the MDS transformation process, it remained a possibility that CD34(+)CD38(-)Thy1(+) HSC disomic for chromosome 8 might be part of the MDS clone. In the present studies, although a variable fraction of CD34(+)CD38(-)Thy1(+) cells were disomic for chromosome 8, they did not possess normal HSC activity in long-term cultures and nonobese diabetic-severe combined immunodeficiency (NOD-SCID) mice. Mixing experiments with normal CD34(+)CD38(-) cells suggested that this HSC deficiency was intrinsic and not mediated by indirect mechanisms. Furthermore, investigation of 4 MDS cases with combined del(5q) and +8 demonstrated that the +8 aberration was always secondary to del(5q). Whereas del(5q) invariably occurs in CD34(+)CD38(-)Thy-1(+) HSCs, the secondary +8 event might frequently arise in progeny of MDS HSCs. Thus, CD34(+)CD38(-)Thy1(+) HSCs are invariably part of the MDS clone also in +8 patients, and little HSC activity can be recovered from the CD34(+) CD38(-)Thy1(+) HSC. Finally, in advanced cases of MDS, the MDS reconstituting activity is exclusively derived from the minor CD34(+)CD38(-) HSC population, demonstrating that MDS stem cells have a similar phenotype as normal HSCs, potentially complicating the development of autologous transplantation for MDS

    The molecular signature of MDS stem cells supports a stem-cell origin of 5q - myelodysplastic syndromes

    No full text
    Global gene expression profiling of highly purified 5q-deleted CD34(+)CD38(-)Thy1(+) cells in 5q(-) myelodysplastic syndromes (MDSs) supported that they might originate from and outcompete normal CD34(+)CD38(-)Thy1(+) hematopoietic stem cells. Few but distinct differences in gene expression distinguished MDS and normal stem cells. Expression of BMI1, encoding a critical regulator of self-renewal, was up-regulated in 5q- stem cells. Whereas multiple previous MDS genetic screens failed to identify altered expression of the gene encoding the myeloid transcription factor CEBPA, stage-specific and extensive down-regulation of CEBPA was specifically observed in MDS progenitors. These studies establish the importance of molecular characterization of distinct stages of cancer stem and progenitor cells to enhance the resolution of stage-specific dysregulated gene expression
    • …
    corecore