572 research outputs found
Parity and Time Reversal in the Spin-Rotation Interaction
A recently reported discrepancy between experimental and theoretical values
of the muon's g-2 factor is interpreted as due to small violations of the
conservation of P and T in the spin-rotation coupling. The experiments place an
upper limit on these violations and on the weight change of spinning
gyroscopes.Comment: 3 page
Plasma Magnetohydrodynamics and Energy Conversion
Contains reports on five research projects.U. S. Air Force (Research and Technology Division) under Contract AF33(615)-1083 with the Air Force Aero Propulsion Laboratory, Wright-Patterson Air Force Base, Ohi
Measurement of the electron electric dipole moment using YbF molecules
The most sensitive measurements of the electron electric dipole moment d_e
have previously been made using heavy atoms. Heavy polar molecules offer a
greater sensitivity to d_e because the interaction energy to be measured is
typically 10^3 times larger than in a heavy atom. We report the first
measurement of this kind, for which we have used the molecule YbF. Together,
the large interaction energy and the strong tensor polarizability of the
molecule make our experiment essentially free of the systematic errors that
currently limit d_e measurements in atoms. Our first result d_e = (- 0.2 \pm
3.2) x 10^-26 e.cm is less sensitive than the best atom measurement, but is
limited only by counting statistics and demonstrates the power of the method.Comment: 4 pages, 4 figures. v2. Minor corrections and clarifications made in
response to referee comment
CPT and Lorentz Tests in Hydrogen and Antihydrogen
Signals for CPT and Lorentz violation at the Planck scale may arise in
hydrogen and antihydrogen spectroscopy. We show that certain 1S-2S and
hyperfine transitions can exhibit theoretically detectable effects unsuppressed
by any power of the fine-structure constant.Comment: 4 pages REVTeX, submitted for publicatio
Multiscale modelling of vascular tumour growth in 3D: the roles of domain size & boundary condition
We investigate a three-dimensional multiscale model of vascular tumour growth, which couples blood flow, angiogenesis, vascular remodelling, nutrient/growth factor transport, movement of, and interactions between, normal and tumour cells, and nutrient-dependent cell cycle dynamics within each cell. In particular, we determine how the domain size, aspect ratio and initial vascular network influence the tumour's growth dynamics and its long-time composition. We establish whether it is possible to extrapolate simulation results obtained for small domains to larger ones, by constructing a large simulation domain from a number of identical subdomains, each subsystem initially comprising two parallel parent vessels, with associated cells and diffusible substances. We find that the subsystem is not representative of the full domain and conclude that, for this initial vessel geometry, interactions between adjacent subsystems contribute to the overall growth dynamics. We then show that extrapolation of results from a small subdomain to a larger domain can only be made if the subdomain is sufficiently large and is initialised with a sufficiently complex vascular network. Motivated by these results, we perform simulations to investigate the tumour's response to therapy and show that the probability of tumour elimination in a larger domain can be extrapolated from simulation results on a smaller domain. Finally, we demonstrate how our model may be combined with experimental data, to predict the spatio-temporal evolution of a vascular tumour
CP violating polarizations in semileptonic heavy meson decays
We study the -violating lepton transverse polarization () in
three body semileptonic heavy meson decays to pseudoscalar mesons and to vector
mesons. We calculate these polarizations in the heavy quark effective limit,
which simplifies the expressions considerably. After examining constraints from
conserving (including ) and violating
processes, we find that in decays, of the muon in multi-Higgs
doublet models can be of order , while of the can even
approach unity. In contrast, in decays is at most 1.5\%. We
discuss possibilities for detection of at current and future
factories. We also show that in decays to vector mesons, unlike in
decays to pseudoscalars, can get contributions from left-right models.
Unfortunately, in that case is proportional to - mixing,
and is thus small.Comment: 32pp plain LATEX, 3 figs (by EMAIL request), TRI-PP-94-1
Lorentz and CPT tests with spin-polarized solids
Experiments using macroscopic samples of spin-polarized matter offer
exceptional sensitivity to Lorentz and CPT violation in the electron sector.
Data from existing experiments with a spin-polarized torsion pendulum provide
sensitivity in this sector rivaling that of all other existing experiments and
could reveal spontaneous violation of Lorentz symmetry at the Planck scale.Comment: 4 pages, accepted for publication in Physical Review Letter
- …