48 research outputs found

    Cloning and characterization of the rat homologues of the Inhibitor of Apoptosis protein 1, 2, and 3 genes.

    Get PDF
    BACKGROUND: Inhibitor of Apoptosis (IAP) proteins are key intrinsic regulators of apoptosis induced by a variety of triggers. We isolated the rat Inhibitor of Apoptosis genes 1, 2 and 3 and characterized their tissue distribution and expression. RESULTS: Rat iap-1 encodes a protein of 67.1 kDa with 73 % and 89.2 % homology to human and mouse iap-1 respectively. Rat iap-2 encodes a protein of 66.7 kDa with 81.6 % and 89.3 % homology to human and mouse iap-2 respectively. Rat iap-3 encodes a protein of 56.1 kDa with 89.5 % and 93.1 % homology to human and mouse iap-3 respectively. We have generated rabbit polyclonal antibodies against all three rat IAP genes. Northern and Western blot analysis detected rat IAP transcripts and proteins in majority of the tissues examined. In addition, a shorter, alternatively spliced transcript corresponding to iap-2 was found in testes. CONCLUSIONS: We have identified three rat homologues of the IAP genes. The elevated expression of rat iap-1 and iap2 in testes suggests that these two genes play an important antiapoptotic role in spermatogenesis

    Silencing of the XAF1 gene by promoter hypermethylation in cancer cells and reactivation to TRAIL-sensitization by IFN-β

    Get PDF
    BACKGROUND: XIAP-associated factor 1 (XAF1) is a putative tumor suppressor that exerts its proapoptotic effects through both caspase-dependent and – independent means. Loss of XAF1 expression through promoter methylation has been implicated in the process of tumorigenesis in a variety of cancers. In this report, we investigated the role of basal xaf1 promoter methylation in xaf1 expression and assessed the responsiveness of cancer cell lines to XAF1 induction by IFN-β. METHODS: We used the conventional bisulfite DNA modification and sequencing method to determine the methylation status in the CpG sites of xaf1 promoter in glioblastoma (SF539, SF295), neuroblastoma (SK-N-AS) and cervical carcinoma (HeLa) cells. We analysed the status and incidence of basal xaf1 promoter methylation in xaf1 expression in non-treated cells as well as under a short or long exposure to IFN-β. Stable XAF1 glioblastoma knock-down cell lines were established to characterize the direct implication of XAF1 in IFN-β-mediated sensitization to TRAIL-induced cell death. RESULTS: We found a strong variability in xaf1 promoter methylation profile and responsiveness to IFN-β across the four cancer cell lines studied. At the basal level, aberrant promoter methylation was linked to xaf1 gene silencing. After a short exposure, the IFN-β-mediated reactivation of xaf1 gene expression was related to the degree of basal promoter methylation. However, in spite of continued promoter hypermethylation, we find that IFN-β induced a transient xaf1 expression, that in turn, was followed by promoter demethylation upon a prolonged exposure. Importantly, we demonstrated for the first time that IFN-β-mediated reactivation of endogenous XAF1 plays a critical role in TRAIL-induced cell death since XAF1 knock-down cell lines completely lost their IFN-β-mediated TRAIL sensitivity. CONCLUSION: Together, these results suggest that promoter demethylation is not the sole factor determining xaf1 gene induction under IFN-β treatment. Furthermore, our study provides evidence that XAF1 is a crucial interferon-stimulated gene (ISG) mediator of IFN-induced sensitization to TRAIL in cancer

    NF-κB Antiapoptosis: Induction of TRAF1 and TRAF2 and c-IAP1 and c-IAP2 to Suppress Caspase-8 Activation

    Get PDF
    Tumor necrosis factor α (TNF-α) binding to the TNF receptor (TNFR) potentially initiates apoptosis and activates the transcription factor nuclear factor kappa B (NF-κB), which suppresses apoptosis by an unknown mechanism. The activation of NF-κB was found to block the activation of caspase-8. TRAF1 (TNFR-associated factor 1), TRAF2, and the inhibitor-of-apoptosis (IAP) proteins c-IAP1 and c-IAP2 were identified as gene targets of NF-κB transcriptional activity. In cells in which NF-κB was inactive, all of these proteins were required to fully suppress TNF-induced apoptosis, whereas c-IAP1 and c-IAP2 were sufficient to suppress etoposide-induced apoptosis. Thus, NF-κB activates a group of gene products that function cooperatively at the earliest checkpoint to suppress TNF-α–mediated apoptosis and that function more distally to suppress genotoxic agent–mediated apoptosis

    XIAP Protection of Photoreceptors in Animal Models of Retinitis Pigmentosa

    Get PDF
    BACKGROUND: Retinitis pigmentosa (RP) is a blinding genetic disorder that is caused by the death of photoreceptors in the outer nuclear layer of the retina. To date, 39 different genetic loci have been associated with the disease, and 28 mutated genes have been identified. Despite the complexity of the underlying genetic basis for RP, the final common pathway is photoreceptor cell death via apoptosis. METHODOLOGY/PRINCIPAL FINDINGS: In this study, P23H and S334ter rhodopsin transgenic rat models of RP were used to test the neuroprotective effects of anti-apoptotic gene therapy. Adeno-associated viruses (AAV) carrying the X-linked inhibitor of apoptosis (XIAP) or green fluorescent protein (GFP) were delivered subretinally into the eye of transgenic rat pups. Histological and functional measures were used to assess neuroprotection. XIAP is known to block apoptosis by inhibiting the action of caspases-3, -7 and -9. The results show that XIAP gene therapy provides long-term neuroprotection of photoreceptors at both structural and functional levels. CONCLUSIONS/SIGNIFICANCE: Our gene therapy strategy targets the apoptotic cascade, which is the final common pathway in all forms of retinitis pigmentosa. This strategy holds great promise for the treatment of RP, as it allows for the broad protection of photoreceptors, regardless of the initial disease causing mutation

    LCL161 enhances expansion and survival of engineered anti-tumor T cells but is restricted by death signaling

    Get PDF
    BackgroundThe genesis of SMAC mimetic drugs is founded on the observation that many cancers amplify IAP proteins to facilitate their survival, and therefore removal of these pathways would re-sensitize the cells towards apoptosis. It has become increasingly clear that SMAC mimetics also interface with the immune system in a modulatory manner. Suppression of IAP function by SMAC mimetics activates the non-canonical NF-κB pathway which can augment T cell function, opening the possibility of using SMAC mimetics to enhance immunotherapeutics.MethodsWe have investigated the SMAC mimetic LCL161, which promotes degradation of cIAP-1 and cIAP-2, as an agent for delivering transient costimulation to engineered BMCA-specific human TAC T cells. In doing so we also sought to understand the cellular and molecular effects of LCL161 on T cell biology.ResultsLCL161 activated the non-canonical NF-κB pathway and enhanced antigen-driven TAC T cell proliferation and survival. Transcriptional profiling from TAC T cells treated with LCL161 revealed differential expression of costimulatory and apoptosis-related proteins, namely CD30 and FAIM3. We hypothesized that regulation of these genes by LCL161 may influence the drug’s effects on T cells. We reversed the differential expression through genetic engineering and observed impaired costimulation by LCL161, particularly when CD30 was deleted. While LCL161 can provide a costimulatory signal to TAC T cells following exposure to isolated antigen, we did not observe a similar pattern when TAC T cells were stimulated with myeloma cells expressing the target antigen. We questioned whether FasL expression by myeloma cells may antagonize the costimulatory effects of LCL161. Fas-KO TAC T cells displayed superior expansion following antigen stimulation in the presence of LCL161, suggesting a role for Fas-related T cell death in limiting the magnitude of the T cell response to antigen in the presence of LCL161.ConclusionsOur results demonstrate that LCL161 provides costimulation to TAC T cells exposed to antigen alone, however LCL161 did not enhance TAC T cell anti-tumor function when challenged with myeloma cells and may be limited due to sensitization of T cells towards Fas-mediated apoptosis

    Role of the TWEAK-Fn14-cIAP1-NF-kB signaling axis in the regulation of myogenesis and muscle homeostasis

    No full text
    Mammalian skeletal muscle maintains a robust regenerative capacity throughout life, due largely to the presence of a stem cell population known as satellite cells in the muscle milieu. In normal conditions, these cells remain quiescent; they are activated upon injury to become myoblasts, which proliferate extensively and eventually differentiate and fuse to form new multinucleated muscle fibers. Recent findings have identified some of the factors, including the cytokine TNFα-like weak inducer of apoptosis (TWEAK), which govern these cells’ decisions to proliferate, differentiate, or fuse. In this review, we will address the functions of TWEAK, its receptor Fn14, and the associated signal transduction molecule, the cellular inhibitor of apoptosis 1 (cIAP1), in the regulation of myogenesis. TWEAK signaling can activate the canonical NF-κB signaling pathway, which promotes myoblast proliferation and inhibits myogenesis. In addition, TWEAK activates the noncanonical NF-κB pathway, which, in contrast, promotes myogenesis by increasing myoblast fusion. Both pathways are regulated by cIAP1, which is an essential component of downstream signaling mediated by TWEAK and similar cytokines. This review will focus on the seemingly contradictory roles played by TWEAK during muscle regeneration, by highlighting the interplay between the two NF-κB pathways under physiological and pathological conditions. We will also discuss how myogenesis is negatively affected by chronic conditions which affect homeostasis of the skeletal muscle environment

    The Internal Ribosome Entry Site-Mediated Translation of Antiapoptotic Protein XIAP Is Modulated by the Heterogeneous Nuclear Ribonucleoproteins C1 and C2

    No full text
    The X-chromosome-linked inhibitor of apoptosis, XIAP, is the most powerful and ubiquitous intrinsic inhibitor of apoptosis. We have shown previously that the translation of XIAP is controlled by a potent internal ribosome entry site (IRES) element. IRES-mediated translation of XIAP is increased in response to cellular stress, suggesting the critical role for IRES translation during cellular stress. Here, we demonstrate that heterogeneous nuclear ribonucleoproteins C1 and C2 (hnRNPC1 and -C2) are part of the RNP complex that forms on XIAP IRES. Furthermore, the cellular levels of hnRNPC1 and -C2 parallel the activity of XIAP IRES and the overexpression of hnRNPC1 and -C2 specifically enhanced translation of XIAP IRES, suggesting that hnRNPC1 and -C2 may modulate XIAP expression. Given the central role of XIAP in the regulation of apoptosis these results are important for our understanding of the control of apoptosis
    corecore