4,571 research outputs found

    The search for novel analgesics: re-examining spinal cord circuits with new tools

    Get PDF
    In this perspective, we propose the absence of detailed information regarding spinal cord circuits that process sensory information remains a major barrier to advancing analgesia. We highlight recent advances showing that functionally discrete populations of neurons in the spinal cord dorsal horn play distinct roles in processing sensory information. We then discuss new molecular, electrophysiological, and optogenetic techniques that can be employed to understand how dorsal horn circuits process tactile and nociceptive information. We believe this information can drive the development of entirely new classes of pharmacotherapies that target key elements in spinal circuits to selectively modify sensory function and blunt pain

    Neutrinos from beta processes in a presupernova: probing the isotopic evolution of a massive star

    Get PDF
    We present a new calculation of the neutrino flux received at Earth from a massive star in the 24\sim 24 hours of evolution prior to its explosion as a supernova (presupernova). Using the stellar evolution code MESA, the neutrino emissivity in each flavor is calculated at many radial zones and time steps. In addition to thermal processes, neutrino production via beta processes is modeled in detail, using a network of 204 isotopes. We find that the total produced νe\nu_{e} flux has a high energy spectrum tail, at E34E \gtrsim 3 - 4 MeV, which is mostly due to decay and electron capture on isotopes with A=5060A = 50 - 60. In a tentative window of observability of E0.5E \gtrsim 0.5 MeV and t<2t < 2 hours pre-collapse, the contribution of beta processes to the νe\nu_{e} flux is at the level of 90%\sim90\% . For a star at D=1D=1 kpc distance, a 17 kt liquid scintillator detector would typically observe several tens of events from a presupernova, of which up to 30%\sim 30\% due to beta processes. These processes dominate the signal at a liquid argon detector, thus greatly enhancing its sensitivity to a presupernova.Comment: 14 pages, 5 figure

    Social Science Knowledge in Family Law Cases: Judicial Gate-keeping in The\u3cem\u3e Daubert\u3c/em\u3e Era

    Get PDF

    What American Catholics Think About the Scandal

    Get PDF

    Concave Switching in Single and Multihop Networks

    Full text link
    Switched queueing networks model wireless networks, input queued switches and numerous other networked communications systems. For single-hop networks, we consider a {(α,g\alpha,g)-switch policy} which combines the MaxWeight policies with bandwidth sharing networks -- a further well studied model of Internet congestion. We prove the maximum stability property for this class of randomized policies. Thus these policies have the same first order behavior as the MaxWeight policies. However, for multihop networks some of these generalized polices address a number of critical weakness of the MaxWeight/BackPressure policies. For multihop networks with fixed routing, we consider the Proportional Scheduler (or (1,log)-policy). In this setting, the BackPressure policy is maximum stable, but must maintain a queue for every route-destination, which typically grows rapidly with a network's size. However, this proportionally fair policy only needs to maintain a queue for each outgoing link, which is typically bounded in number. As is common with Internet routing, by maintaining per-link queueing each node only needs to know the next hop for each packet and not its entire route. Further, in contrast to BackPressure, the Proportional Scheduler does not compare downstream queue lengths to determine weights, only local link information is required. This leads to greater potential for decomposed implementations of the policy. Through a reduction argument and an entropy argument, we demonstrate that, whilst maintaining substantially less queueing overhead, the Proportional Scheduler achieves maximum throughput stability.Comment: 28 page

    No Child Overlooked: Mental Health Triage in the Schools

    Get PDF
    Mental health problems among children in schools are on the increase. To exercise due diligence in their responsibility to monitor and promote mental health among our nation’s children, school counselors may learn from triage systems employed in hospitals, clinics, and mental health centers. The School Counselor’s Triage Model provides school counselors with an easy-to-use, time efficient assessment tool to enable them to screen large groups of students to determine their mental health needs. By engaging in systematic mental health screening, school counselors can efficiently and effectively demonstrate their commitment to a core value of school counseling: addressing every child’s social-emotional needs

    Examining IS Curriculum Profiles and the IS 2010 Model Curriculum Guidelines in AACSB-Accredited Schools

    Get PDF
    The IS 2010 Model Curriculum Guidelines were developed to provide recommendations for standardized information systems curricula while simultaneously allowing for customization within individual programs. While some studies have examined program adherence to the IS 2010 Model Curriculum Guidelines, a more detailed analysis of IS curriculum profiles has not yet been conducted. The purpose of this study is to identify and describe IS curriculum profiles that exist among 127 AACSB IS programs using the IS 2010 guidelines as a framework for analysis. A cluster analysis reveals four distinct profiles of IS program structure: Independent, Focused, Adoptive, and Flexible. Prototypes of each profile are described along with significant differences between each profile as revealed by a discriminant analysis. Identifying and describing these curriculum profiles offers a snapshot of the state of the IS curriculum as a whole and provides a resource for programs seeking to examine and modify their respective curriculum models
    corecore