10 research outputs found

    The novel chemokine receptor CXCR7 regulates trans-endothelial migration of cancer cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Migration of metastatic tumor cells from the bloodstream into lymph nodes is thought to be facilitated by expression of the chemokine receptors CCR7, CXCR4 and, for B cell-derived tumors, CXCR5. Expression of their respective chemokine ligands (CCL19, CCL21, CXCL12 and CXCL13) by endothelial cells inside the lymph nodes facilitates the trans-endothelial migration (TEM) of these cells through high endothelial venules into the lymph node parenchyma. It is known that CXCR7, a second CXCL12 receptor, regulates TEM of CXCR4+CXCR7+ tumor cells towards a CXCL12 source. In this study, we set out to assess the potential stimulation by CXCL12 of tumor cell TEM towards other chemokines and whether CXCR7 might be able to regulate such effects.</p> <p>Methods</p> <p>The human Burkitt's lymphoma cell line NC-37, which expresses CXCR4, CXCR5, CXCR7 and CCR7, was selected as a model system. TEM of these cells through a human HUVEC endothelial cell monolayer was used as the main model system for these studies. Regulation of their TEM behavior by various concentrations of the various cognate chemokines for the above-mentioned receptors, placed in either the source or target wells of modified Boyden chamber migration plates, was assessed by quantifying the number of cells migrated under each experimental condition.</p> <p>Results</p> <p>Exposure of CXCR4<sup>+</sup>CXCR7<sup>+ </sup>cancer cells to CXCL12 greatly potentiated their TEM towards the chemokines CCL19 and CXCL13. This CXCL12-potentiated TEM was inhibited by the second CXCR7 chemokine ligand, CXCL11, as well as CXCR7-specific small molecule antagonists and antibodies. In contrast, the CXCR4 antagonist AMD3100 was less effective at inhibiting CXCL12-potentiated TEM. Thus, CXCR7 antagonists may be effective therapeutic agents for blocking CXCL12-mediated migration of CXCR4<sup>+</sup>CXCR7<sup>+ </sup>tumor cells into lymph nodes, regardless of whether the cancer cells follow a CXCL12 gradient or whether serum CXCL12 stimulates their migration towards CCR7 and CXCR5 chemokines in the lymph nodes.</p

    Evidence for NK Cell Subsets Based on Chemokine Receptor Expression

    No full text

    CCR9 Antagonists in the Treatment of Ulcerative Colitis

    No full text
    While it has long been established that the chemokine receptor CCR9 and its ligand CCL25 are essential for the movement of leukocytes into the small intestine and the development of small-intestinal inflammation, the role of this chemokine-receptor pair in colonic inflammation is not clear. Toward this end, we compared colonic CCL25 protein levels in healthy individuals to those in patients with ulcerative colitis. In addition, we determined the effect of CCR9 pharmacological inhibition in the mdr1a−/− mouse model of ulcerative colitis. Colon samples from patients with ulcerative colitis had significantly higher levels of CCL25 protein compared to healthy controls, a finding mirrored in the mdr1a−/− mice. In the mdr1a−/− mice, CCR9 antagonists significantly decreased the extent of wasting and colonic remodeling and reduced the levels of inflammatory cytokines in the colon. These findings indicate that the CCR9:CCL25 pair plays a causative role in ulcerative colitis and suggest that CCR9 antagonists will provide a therapeutic benefit in patients with colonic inflammation

    Immune regulation by atypical chemokine receptors

    No full text
    Chemokines have fundamental roles in regulating immune and inflammatory responses, primarily through their control of leukocyte migration and localization. The biological functions of chemokines are typically mediated by signalling through G protein-coupled chemokine receptors, but chemokines are also bound by a small family of atypical chemokine receptors (ACKRs), the members of which are unified by their inability to initiate classical signalling pathways after ligand binding. These ACKRs are emerging as crucial regulatory components of chemokine networks in a wide range of developmental, physiological and pathological contexts. In this Review, we discuss the biochemical and immunological properties of ACKRs and the potential unifying themes in this family, and we highlight recent studies that identify novel roles for these molecules in development, homeostasis, inflammatory disease, infection and cancer
    corecore