23 research outputs found

    Joint Beamforming Design and 3D DoA Estimation for RIS-aided Communication System

    Full text link
    In this paper, we consider a reconfigurable intelligent surface (RIS)-assisted 3D direction-of-arrival (DoA) estimation system, in which a uniform planar array (UPA) RIS is deployed to provide virtual line-of-sight (LOS) links and reflect the uplink pilot signal to sensors. To overcome the mutually coupled problem between the beamforming design at the RIS and DoA estimation, we explore the separable sparse representation structure and propose an alternating optimization algorithm. The grid-based DoA estimation is modeled as a joint-sparse recovery problem considering the grid bias, and the Joint-2D-OMP method is used to estimate both on-grid and off-grid parts. The corresponding Cram\'er-Rao lower bound (CRLB) is derived to evaluate the estimation. Then, the beampattern at the RIS is optimized to maximize the signal-to-noise (SNR) at sensors according to the estimated angles. Numerical results show that the proposed alternating optimization algorithm can achieve lower estimation error compared to benchmarks of random beamforming design.Comment: 6 pages, 6 figure

    Optimal Discrete Beamforming of RIS-Aided Wireless Communications: an Inner Product Maximization Approach

    Full text link
    This paper addresses non-convex optimization problems in communication services using reconfigurable intelligent surfaces (RISs). Specifically, we focus on optimal beamforming in RIS-aided communications, and formulate it as a discrete inner product maximization problem. To solve this problem, we propose a highly efficient divide-and-sort (DaS) search framework that guarantees global optima with linear search complexity, both in the number of discrete levels and reflecting cells. This approach is particularly effective for large-scale problems. Our numerical studies and prototype experiments demonstrate the speed and effectiveness of the proposed DaS. We also show that for moderate resolution quantization (4-bits and above), there is no noticeable difference between continuous and discrete phase configurations

    Asymptotic CRB Analysis of Random RIS-Assisted Large-Scale Localization Systems

    Full text link
    This paper studies the performance of a randomly RIS-assisted multi-target localization system, in which the configurations of the RIS are randomly set to avoid high-complexity optimization. We first focus on the scenario where the number of RIS elements is significantly large, and then obtain the scaling law of Cram\'er-Rao bound (CRB) under certain conditions, which shows that CRB decreases in the third or fourth order as the RIS dimension increases. Second, we extend our analysis to large systems where both the number of targets and sensors is substantial. Under this setting, we explore two common RIS models: the constant module model and the discrete amplitude model, and illustrate how the random RIS configuration impacts the value of CRB. Numerical results demonstrate that asymptotic formulas provide a good approximation to the exact CRB in the proposed randomly configured RIS systems

    Decentralized Uncoded Storage Elastic Computing with Heterogeneous Computation Speeds

    Full text link
    Elasticity plays an important role in modern cloud computing systems. Elastic computing allows virtual machines (i.e., computing nodes) to be preempted when high-priority jobs arise, and also allows new virtual machines to participate in the computation. In 2018, Yang et al. introduced Coded Storage Elastic Computing (CSEC) to address the elasticity using coding technology, with lower storage and computation load requirements. However, CSEC is limited to certain types of computations (e.g., linear) due to the coded data storage based on linear coding. Then Centralized Uncoded Storage Elastic Computing (CUSEC) with heterogeneous computation speeds was proposed, which directly copies parts of data into the virtual machines. In all existing works in elastic computing, the storage assignment is centralized, meaning that the number and identity of all virtual machines possible used in the whole computation process are known during the storage assignment. In this paper, we consider Decentralized Uncoded Storage Elastic Computing (DUSEC) with heterogeneous computation speeds, where any available virtual machine can join the computation which is not predicted and thus coordination among different virtual machines' storage assignments is not allowed. Under a decentralized storage assignment originally proposed in coded caching by Maddah-Ali and Niesen, we propose a computing scheme with closed-form optimal computation time. We also run experiments over MNIST dataset with Softmax regression model through the Tencent cloud platform, and the experiment results demonstrate that the proposed DUSEC system approaches the state-of-art best storage assignment in the CUSEC system in computation time.Comment: 10 pages, 8 figures, submitted to ISIT202
    corecore