21 research outputs found

    Joint Beamforming Design and 3D DoA Estimation for RIS-aided Communication System

    Full text link
    In this paper, we consider a reconfigurable intelligent surface (RIS)-assisted 3D direction-of-arrival (DoA) estimation system, in which a uniform planar array (UPA) RIS is deployed to provide virtual line-of-sight (LOS) links and reflect the uplink pilot signal to sensors. To overcome the mutually coupled problem between the beamforming design at the RIS and DoA estimation, we explore the separable sparse representation structure and propose an alternating optimization algorithm. The grid-based DoA estimation is modeled as a joint-sparse recovery problem considering the grid bias, and the Joint-2D-OMP method is used to estimate both on-grid and off-grid parts. The corresponding Cram\'er-Rao lower bound (CRLB) is derived to evaluate the estimation. Then, the beampattern at the RIS is optimized to maximize the signal-to-noise (SNR) at sensors according to the estimated angles. Numerical results show that the proposed alternating optimization algorithm can achieve lower estimation error compared to benchmarks of random beamforming design.Comment: 6 pages, 6 figure

    Optimal Discrete Beamforming of RIS-Aided Wireless Communications: an Inner Product Maximization Approach

    Full text link
    This paper addresses non-convex optimization problems in communication services using reconfigurable intelligent surfaces (RISs). Specifically, we focus on optimal beamforming in RIS-aided communications, and formulate it as a discrete inner product maximization problem. To solve this problem, we propose a highly efficient divide-and-sort (DaS) search framework that guarantees global optima with linear search complexity, both in the number of discrete levels and reflecting cells. This approach is particularly effective for large-scale problems. Our numerical studies and prototype experiments demonstrate the speed and effectiveness of the proposed DaS. We also show that for moderate resolution quantization (4-bits and above), there is no noticeable difference between continuous and discrete phase configurations

    Asymptotic CRB Analysis of Random RIS-Assisted Large-Scale Localization Systems

    Full text link
    This paper studies the performance of a randomly RIS-assisted multi-target localization system, in which the configurations of the RIS are randomly set to avoid high-complexity optimization. We first focus on the scenario where the number of RIS elements is significantly large, and then obtain the scaling law of Cram\'er-Rao bound (CRB) under certain conditions, which shows that CRB decreases in the third or fourth order as the RIS dimension increases. Second, we extend our analysis to large systems where both the number of targets and sensors is substantial. Under this setting, we explore two common RIS models: the constant module model and the discrete amplitude model, and illustrate how the random RIS configuration impacts the value of CRB. Numerical results demonstrate that asymptotic formulas provide a good approximation to the exact CRB in the proposed randomly configured RIS systems

    Wireless Regional Imaging through Reconfigurable Intelligent Surfaces: Passive Mode

    Full text link
    In this paper, we propose a multi-RIS-aided wireless imaging framework in 3D facing the distributed placement of multi-sensor networks. The system creates a randomized reflection pattern by adjusting the RIS phase shift, enabling the receiver to capture signals within the designated space of interest (SoI). Firstly, a multi-RIS-aided linear imaging channel modeling is proposed. We introduce a theoretical framework of computational imaging to recover the signal strength distribution of the SOI. For the RIS-aided imaging system, the impact of multiple parameters on the performance of the imaging system is analyzed. The simulation results verify the correctness of the proposal. Furthermore, we propose an amplitude-only imaging algorithm for the RIS-aided imaging system to mitigate the problem of phase unpredictability. Finally, the performance verification of the imaging algorithm is carried out by proof of concept experiments under reasonable parameter settings
    corecore