41 research outputs found

    Visualization and phenotyping of proinflammatory antigen-specific T cells during collagen-induced arthritis in a mouse with a fixed collagen type II-specific transgenic T-cell receptor beta-chain

    Get PDF
    Introduction: The Vbeta12-transgenic mouse was previously generated to investigate the role of antigen-specific T cells in collagen-induced arthritis (CIA), an animal model for rheumatoid arthritis. This mouse expresses a transgenic collagen type II (CII)-specific T-cell receptor (TCR) beta-chain and consequently displays an increased immunity to CII and increased susceptibility to CIA. However, while the transgenic Vbeta12 chain recombines with endogenous alpha-chains, the frequency and distribution of CII-specific T cells in the Vbeta12-transgenic mouse has not been determined. The aim of the present report was to establish a system enabling identification of CII-specific T cells in the Vbeta12-transgenic mouse in order to determine to what extent the transgenic expression of the CII-specific beta-chain would skew the response towards the immunodominant galactosylated T-cell epitope and to use this system to monitor these cells throughout development of CIA. Methods: We have generated and thoroughly characterized a clonotypic antibody, which recognizes a TCR specific for the galactosylated CII(260-270) peptide in the Vbeta12-transgenic mouse. Hereby, CII-specific T cells could be quantified and followed throughout development of CIA, and their phenotype was determined by combinatorial analysis with the early activation marker CD154 (CD40L) and production of cytokines. Results: The Vbeta12-transgenic mouse expresses several related but distinct T-cell clones specific for the galactosylated CII peptide. The clonotypic antibody could specifically recognize the majority (80%) of these. Clonotypic T cells occurred at low levels in the naïve mouse, but rapidly expanded to around 4% of the CD4+ T cells, whereupon the frequency declined with developing disease. Analysis of the cytokine profile revealed an early Th1-biased response in the draining lymph nodes that would shift to also include Th17 around the onset of arthritis. Data showed that Th1 and Th17 constitute a minority among the CII-specific population, however, indicating that additional subpopulations of antigen-specific T cells regulate the development of CIA. Conclusions: The established system enables the detection and detailed phenotyping of T cells specific for the galactosylated CII peptide and constitutes a powerful tool for analysis of the importance of these cells and their effector functions throughout the different phases of arthritis

    Induction of a B-cell-dependent chronic arthritis with glucose-6-phosphate isomerase

    Get PDF
    Antibodies specific for glucose-6-phosphate isomerase (G6PI) from T-cell receptor transgenic K/BxN mice are known to induce arthritis in mice, and immunization of DBA/1 mice with G6PI led to acute arthritis without permanent deformation of their joints. Because rheumatoid arthritis is a chronic disease, we set out to identify the capacity of G6PI to induce chronic arthritis in mice. Immunization with recombinant human G6PI induced a chronically active arthritis in mice with a C3H genomic background, whereas the DBA/1 background allowed only acute arthritis and the C57BL/10 background permitted no or very mild arthritis. The disease was associated with the major histocompatibility region sharing an allelic association similar to that of collagen-induced arthritis (i.e. q > p > r). All strains developed a strong antibody response to G6PI that correlated only in the C3H.NB strain with arthritis severity. Similarly, a weak response to type II collagen in a few mice was observed, which was associated with arthritis in C3H.NB mice. Mice on the C3H background also developed ankylosing spondylitis in the vertebrae of the tail. Both C3H.Q and B10.Q mice deficient for B cells were resistant to arthritis. We conclude that G6PI has the ability to induce a chronic arthritis, which is MHC associated and B-cell dependent. Thus, there are striking similarities between this and the collagen-induced arthritis model

    Pharmacological inhibition of carnitine palmitoyl transferase 1 inhibits and reverses experimental autoimmune encephalitis in rodents

    Get PDF
    Multiple sclerosis (MS) is a neurodegenerative disease characterized by demyelination and inflammation. Dysregulated lipid metabolism and mitochondrial dysfunction are hypothesized to play a key role in MS. Carnitine Palmitoyl Transferase 1 (CPT1) is a rate-limiting enzyme for beta-oxidation of fatty acids in mitochondria. The therapeutic effect of pharmacological CPT1 inhibition with etomoxir was investigated in rodent models of myelin oligodendrocyte glycoprotein- and myelin basic protein-induced experimental autoimmune encephalitis (EAE). Mice receiving etomoxir showed lower clinical score compared to placebo, however this was not significant. Rats receiving etomoxir revealed significantly lower clinical score and lower body weight compared to placebo group. When comparing etomoxir with interferon-β (IFN-β), IFN-β had no significant therapeutic effects, whereas etomoxir treatment starting at day 1 and 5 significantly improved the clinical scores compared to the IFN-β and the placebo group. Immunohistochemistry and image assessments of brain sections from rats with EAE showed higher myelination intensity and decreased expression of CPT1A in etomoxir-treated rats compared to placebo group. Moreover, etomoxir mediated increased interleukin-4 production and decreased interleukin-17α production in activated T cells. In conclusion, CPT1 is a key protein in the pathogenesis of EAE and MS and a crucial therapeutic target for the treatment

    Structure and pathogenicity of antibodies specific for citrullinated collagen type II in experimental arthritis

    Get PDF
    Antibodies to citrulline-modifi ed proteins have a high diagnostic value in rheumatoid arthritis (RA). However, their biological role in disease development is still unclear. To obtain insight into this question, a panel of mouse monoclonal antibodies was generated against a major triple helical collagen type II (CII) epitope (position 359 – 369; ARGLTGRPGDA) with or without arginines modifi ed by citrullination. These antibodies bind cartilage and synovial tissue, and mediate arthritis in mice. Detection of citrullinated CII from RA patients ’ synovial fl uid demonstrates that cartilage-derived CII is indeed citrullinated in vivo. The structure determination of a Fab fragment of one of these antibodies in complex with a citrullinated peptide showed a surprising beta -turn conformation of the peptide and provided information on citrulline recognition. Based on these findings, we propose that autoimmunity to CII, leading to the production of antibodies specific for both native and citrullinated CII, is an important pathogenic factor in the development of RA

    Fragmentation of two quantitative trait loci controlling collagen-induced arthritis reveals a new set of interacting subloci

    No full text
    Linkage analysis of F-2 crosses has led to identification of large numbers of quantitative trait loci (QTL) for complex diseases, but identification of the underlying genes has been more difficult. Reasons for this could be complications that arise from separation of interacting or neighboring loci. We made a partial advanced intercross (PAI) to characterize and fine-map linkage to collagen-induced arthritis in two chromosomal regions derived from the DBA/1 strain and crossed into the B10.Q strain: Cia7 on chromosome 7 and a locus on chromosome 15. Only Cia7 was detected by a previous F-2 cross. Linkage analysis of the PAI revealed a different linkage pattern than the F-2 cross, adding multiple loci and strong linkage to the previously unlinked chromosome 15 region. Subcongenic strains derived from animals in the PAI confirmed the loci and revealed additional subloci. In total, no less than seven new loci were identified. Several loci interacted and three loci were protective, thus partly balancing the effect of the disease-promoting loci. Our results indicate that F-2 crosses do not reveal the full complexity of identified QTLs, and that detection is more dependent on the genetic context of a QTL than the potential effect of the underlying gene

    The molecular pathogenesis of collagen-induced arthritis in mice--a model for rheumatoid arthritis.

    No full text
    The most widely used model for rheumatoid arthritis is the collagen-induced arthritis (CIA) in mice. This model has gained acceptance since it is reproducible, well defined and has proven useful for development of new therapies for rheumatoid arthritis, as exemplified by the most recent advancement using TNFalpha neutralization treatment. The collagen-induced arthritis model, however, represents only certain pathways leading to arthritis and there is no consensus on how they operate. Nevertheless, we are beginning to understand the immune recognition structures, such as MHC molecules, lymphocyte receptors and type II collagen epitopes, which are of crucial importance for the development of this disease. These provide useful tools for further investigations of the pathogenesis of CIA as well as for understanding the pathogenesis of rheumatoid arthritis

    Genetic control of tolerance to type II collagen and development of arthritis in an autologous collagen-induced arthritis model.

    No full text
    T cell recognition of the type II collagen (CII) 260-270 peptide is a bottleneck for the development of collagen-induced arthritis (CIA), an animal model of rheumatoid arthritis. We have earlier made C3H.Q mice expressing CII with glutamic acid instead of aspartic acid at position 266 (the MMC-C3H.Q mouse), similar to the rat and human CII epitope, which increases binding to MHC class II and leads to effective presentation of the peptide in vivo. These mice show T cell tolerance to CII, but also develop severe arthritis. The present investigation shows that non-MHC genes play a decisive role in determining tolerance and arthritis susceptibility. We bred MMC into B10.Q mice, which display similar susceptibility to CIA induced with rat CII as the C3H.Q mice. In contrast to MMC-C3H.Q mice, MMC-B10.Q mice were completely resistant to arthritis. Nontransgenic (B10.Q x C3H.Q)F(1) mice were more susceptible to CIA than either of the parental strains, but introduction of the MMC transgene leads to CIA resistance, showing that the protection is dominantly inherited from B10.Q. In an attempt to break the B10-mediated CIA protection in MMC-transgenic mice, we introduced a transgenic, CII-specific, TCR beta-chain specific for the CII(260-270) glycopeptide, in the highly CIA-susceptible (B10.Q x DBA/1)F(1) mice. The magnification of the autoreactive CII-specific T cell repertoire led to increased CIA susceptibility, but the disease was less severe than in mice lacking the MMC transgene. This finding is important for understanding CIA and perhaps also rheumatoid arthritis, as in both diseases MHC class II-restricted T cell recognition of the glycosylated CII peptide occurs
    corecore