29 research outputs found

    The novel chemokine receptor CXCR7 regulates trans-endothelial migration of cancer cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Migration of metastatic tumor cells from the bloodstream into lymph nodes is thought to be facilitated by expression of the chemokine receptors CCR7, CXCR4 and, for B cell-derived tumors, CXCR5. Expression of their respective chemokine ligands (CCL19, CCL21, CXCL12 and CXCL13) by endothelial cells inside the lymph nodes facilitates the trans-endothelial migration (TEM) of these cells through high endothelial venules into the lymph node parenchyma. It is known that CXCR7, a second CXCL12 receptor, regulates TEM of CXCR4+CXCR7+ tumor cells towards a CXCL12 source. In this study, we set out to assess the potential stimulation by CXCL12 of tumor cell TEM towards other chemokines and whether CXCR7 might be able to regulate such effects.</p> <p>Methods</p> <p>The human Burkitt's lymphoma cell line NC-37, which expresses CXCR4, CXCR5, CXCR7 and CCR7, was selected as a model system. TEM of these cells through a human HUVEC endothelial cell monolayer was used as the main model system for these studies. Regulation of their TEM behavior by various concentrations of the various cognate chemokines for the above-mentioned receptors, placed in either the source or target wells of modified Boyden chamber migration plates, was assessed by quantifying the number of cells migrated under each experimental condition.</p> <p>Results</p> <p>Exposure of CXCR4<sup>+</sup>CXCR7<sup>+ </sup>cancer cells to CXCL12 greatly potentiated their TEM towards the chemokines CCL19 and CXCL13. This CXCL12-potentiated TEM was inhibited by the second CXCR7 chemokine ligand, CXCL11, as well as CXCR7-specific small molecule antagonists and antibodies. In contrast, the CXCR4 antagonist AMD3100 was less effective at inhibiting CXCL12-potentiated TEM. Thus, CXCR7 antagonists may be effective therapeutic agents for blocking CXCL12-mediated migration of CXCR4<sup>+</sup>CXCR7<sup>+ </sup>tumor cells into lymph nodes, regardless of whether the cancer cells follow a CXCL12 gradient or whether serum CXCL12 stimulates their migration towards CCR7 and CXCR5 chemokines in the lymph nodes.</p

    Hypoxia Selectively Impairs CAR-T Cells In Vitro

    No full text
    Hypoxia is a major characteristic of the solid tumor microenvironment. To understand how chimeric antigen receptor-T cells (CAR-T cells) function in hypoxic conditions, we characterized CD19-specific and BCMA-specific human CAR-T cells generated in atmospheric (18% oxygen) and hypoxic (1% oxygen) culture for expansion, differentiation status, and CD4:CD8 ratio. CAR-T cells expanded to a much lower extent in 1% oxygen than in 18% oxygen. Hypoxic CAR-T cells also had a less differentiated phenotype and a higher CD4:CD8 ratio than atmospheric CAR-T cells. CAR-T cells were then added to antigen-positive and antigen-negative tumor cell lines at the same or lower oxygen level and characterized for cytotoxicity, cytokine and granzyme B secretion, and PD-1 upregulation. Atmospheric and hypoxic CAR-T cells exhibited comparable cytolytic activity and PD-1 upregulation; however, cytokine production and granzyme B release were greatly decreased in 1% oxygen, even when the CAR-T cells were generated in atmospheric culture. Together, these data show that at solid tumor oxygen levels, CAR-T cells are impaired in expansion, differentiation and cytokine production. These effects may contribute to the inability of CAR-T cells to eradicate solid tumors seen in many patients

    Hypoxia Selectively Impairs CAR-T Cells In Vitro

    No full text
    Hypoxia is a major characteristic of the solid tumor microenvironment. To understand how chimeric antigen receptor-T cells (CAR-T cells) function in hypoxic conditions, we characterized CD19-specific and BCMA-specific human CAR-T cells generated in atmospheric (18% oxygen) and hypoxic (1% oxygen) culture for expansion, differentiation status, and CD4:CD8 ratio. CAR-T cells expanded to a much lower extent in 1% oxygen than in 18% oxygen. Hypoxic CAR-T cells also had a less differentiated phenotype and a higher CD4:CD8 ratio than atmospheric CAR-T cells. CAR-T cells were then added to antigen-positive and antigen-negative tumor cell lines at the same or lower oxygen level and characterized for cytotoxicity, cytokine and granzyme B secretion, and PD-1 upregulation. Atmospheric and hypoxic CAR-T cells exhibited comparable cytolytic activity and PD-1 upregulation; however, cytokine production and granzyme B release were greatly decreased in 1% oxygen, even when the CAR-T cells were generated in atmospheric culture. Together, these data show that at solid tumor oxygen levels, CAR-T cells are impaired in expansion, differentiation and cytokine production. These effects may contribute to the inability of CAR-T cells to eradicate solid tumors seen in many patients

    Evidence for NK Cell Subsets Based on Chemokine Receptor Expression

    No full text

    CD47-CAR-T Cells Effectively Kill Target Cancer Cells and Block Pancreatic Tumor Growth

    No full text
    CD47 is a glycoprotein of the immunoglobulin superfamily that is often overexpressed in different types of hematological and solid cancer tumors and plays important role in blocking phagocytosis, increased tumor survival, metastasis and angiogenesis. In the present report, we designed CAR (chimeric antigen receptor)-T cells that bind CD47 antigen. We used ScFv (single chain variable fragment) from mouse CD47 antibody to generate CD47-CAR-T cells for targeting different cancer cell lines. CD47-CAR-T cells effectively killed ovarian, pancreatic and other cancer cells and produced high level of cytokines that correlated with expression of CD47 antigen. In addition, CD47-CAR-T cells significantly blocked BxPC3 pancreatic xenograft tumor growth after intratumoral injection into NSG mice. Moreover, we humanized mouse CD47 ScFv and showed that it effectively bound CD47 antigen. The humanized CD47-CAR-T cells also specifically killed ovarian, pancreatic, and cervical cancer cell lines and produced IL-2 that correlated with expression of CD47. Thus, CD47-CAR-T cells can be used as a novel cellular therapeutic agent for treating different types of cancer

    Novel CD37, Humanized CD37 and Bi-Specific Humanized CD37-CD19 CAR-T Cells Specifically Target Lymphoma

    No full text
    CD19 and CD37 proteins are highly expressed in B-cell lymphoma and have been successfully targeted with different monotherapies, including chimeric antigen receptor (CAR)-T cell therapy. The goal of this study was to target lymphoma with novel CD37, humanized CD37, and bi-specific humanized CD37-CD19 CAR-T cells. A novel mouse monoclonal anti-human CD37 antibody (clone 2B8D12F2D4) was generated with high binding affinity for CD37 antigen (KD = 1.6 nM). The CD37 antibody specifically recognized cell surface CD37 protein in lymphoma cells and not in multiple myeloma or other types of cancer. The mouse and humanized CD37-CAR-T cells specifically killed Raji and CHO-CD37 cells and secreted IFN-gamma. In addition, we generated bi-specific humanized hCD37-CD19 CAR-T cells that specifically killed Raji cells, CHO-CD37, and Hela-CD19 cells and did not kill control CHO or Hela cells. Moreover, the hCD37-CD19 CAR-T cells secreted IFN-gamma against CD37-positive and CD19-positive target CHO-CD37, Hela-CD19 cells, respectively, but not against CD19 and CD37-negative parental cell line. The bi-specific hCD37-CD19 significantly inhibited Raji xenograft tumor growth and prolonged mouse survival in NOD scid gamma mouse (NSG) mouse model. This study demonstrates that novel humanized CD37 and humanized CD37-CD19 CAR-T cells specifically targeted either CD37 positive or CD37 and CD19-positive cells and provides a basis for future clinical studies
    corecore