894 research outputs found

    Labor and the Secondary Boycott

    Get PDF
    Advisedly has the boycott \u27 been characterized as a chameleon that is impossible of definition. Only the epithet secondary boycott has perhaps occasioned more intricate judicial gymnastics. Justice Steinert, writing for the Washington Supreme Court, has recently observed with perspicacity that the term \u27secondary boycott\u27 is of somewhat vague signification and has no precise and exclusive denotation. In the field of labor relations, as in other branches of the law, bench and bar have leaned on the comforting pillar of lump concept thinking which has more than once done yeoman\u27s service for judicial reasoning and analysis. Truly has there been more than one black-robed Humpty Dumpty whose use of the phrase secondary boycott has meant just what I choose it to mean—neither more nor less

    ATG proteins mediate efferocytosis and suppress inflammation in mammary involution.

    Get PDF
    Involution is the process of post-lactational mammary gland regression to quiescence and it involves secretory epithelial cell death, stroma remodeling and gland repopulation by adipocytes. Though reportedly accompanying apoptosis, the role of autophagy in involution has not yet been determined. We now report that autophagy-related (ATG) proteins mediate dead cell clearance and suppress inflammation during mammary involution. In vivo, Becn1(+/-) and Atg7-deficient mammary epithelial cells (MECs) produced 'competent' apoptotic bodies, but were defective phagocytes in association with reduced expression of the MERTK and ITGB5 receptors, thus pointing to defective apoptotic body engulfment. Atg-deficient tissues exhibited higher levels of involution-associated inflammation, which could be indicative of a tumor-modulating microenvironment, and developed ductal ectasia, a manifestation of deregulated post-involution gland remodeling. In vitro, ATG (BECN1 or ATG7) knockdown compromised MEC-mediated apoptotic body clearance in association with decreased RAC1 activation, thus confirming that, in addition to the defective phagocytic processing reported by other studies, ATG protein defects also impair dead cell engulfment. Using two different mouse models with mammary gland-associated Atg deficiencies, our studies shed light on the essential role of ATG proteins in MEC-mediated efferocytosis during mammary involution and provide novel insights into this important developmental process. This work also raises the possibility that a regulatory feedback loop exists, by which the efficacy of phagocytic cargo processing in turn regulates the rate of engulfment and ultimately determines the kinetics of phagocytosis and dead cell clearance

    The Influence of Surface Finish and Build Orientation on the Low Cycle Fatigue Behaviour of Laser Powder Bed Fused Stainless Steel 316L

    Get PDF
    Additive manufacturing (AM) processes are currently under consideration for marine based components, predominantly due to the numerous benefits that the techniques have to offer over more conventional manufacturing routes. However, there are multiple engineering challenges and questions associated with the introduction of AM based parts into safety critical applications related to the mechanical behaviour of such components. One of the main factors influencing the cyclic performance of a component is the surface finish. As-built AM parts typically exhibit a rough surface owing to partially melted powder being present at the surface and the layer-by-layer nature of the AM process, which together will likely hinder the fatigue response of the component. This behaviour is further influenced by the build orientation of the AM component, with alternative orientations providing a different surface profile alongside a contrasting microstructural morphology. Therefore, alternative finishing methods have been explored to maximise the fatigue performance of components whilst also considering cost and time. This research will explore the low cycle fatigue (LCF) behaviour of laser powder bed fused (LPBF) stainless steel 316L (SS316LN) built in two principal orientations (vertical (90°) and diagonal (45°)) and subsequently subjected to several post-manufacture finishing processes in order to identify the optimal finish for mechanical performance. The mechanical results are supported by microstructural, fractographic and advanced surface profilometry assessments, which have revealed that surface roughness can not be considered alone to be the controlling influence on LCF behaviour. An as-built surface finish will inherently provide a greater number of surface breaking stress raisers, however, a novel mass finishing polishing procedure has been found to produce a similar effective stress concentration factor compared to conventional longitudinal polishing, offering a more viable and less time consuming alternative. Several other key factors must also be considered when assessing the fatigue performance of LPBF built materials, including build direction and the resulting grain orientation, density of the additive structure and the material's sensitivity to the presence of notched features at the surface. Finally, the generated mechanical data has also been interpreted through empirical modelling, and the various data sets have been successfully correlated to enable longer fatigue life predictions

    Derivation of material properties using small punch and shear punch test methods

    Get PDF
    The Small Punch (SP) and Shear Punch (ShP) tests are well established mechanical test approaches that have found application in several industrial sectors for material ranking and mechanical property estimation, particularly where more conventional approaches are inhibited. Despite the advantages that the two test methodologies have to offer, the main drawback is the complex understanding of the mechanical data generated from the experiments and how it can be correlated to more recognised properties. Typically, the most desired properties relate to the uniaxial properties of yield stress, ultimate tensile strength and ductility, but to date, there is no single robust and overarching approach for correlating such properties for a wide array of metallic materials that exhibit varying levels of ductility. This paper will for the first time directly compare properties obtained from a series of uniaxial tensile, SP and ShP tests across several metallic materials, and look to establish and correlate equivalent properties across the different test types. The materials investigated range from commercially pure entities to more advanced alloy systems. The generated results, empirical relationships and numerical simulations will inform which materials can be correlated across the different test regimes, and identify why the relationship in certain materials breaks down
    • …
    corecore