5,469 research outputs found

    Piezoelectricity of Cholesteric Elastomers

    Full text link
    We consider theoretically the properties of piezoelectricity in cholesteric elastomers. We deduce using symmetry considerations the piezoelectric contributions to the free energy in the context of a coarse-grained description of the material. In contrast to previous work we find that compressions or elongations of the material along the pitch axis do not produce a piezoelectric response, in agreement with fundamental symmetry considerations. Rather only suitable shear strains or local rotations produce a polarization. We propose some molecular mechanisms to explain these effects.Comment: 11 pages, 1 Postscript figure; Late

    Role of electrostatics in the texture of islands in free standing ferroelectric liquid crystal films

    Full text link
    Curved textures of ferroelectric smectic C* liquid crystals produce space charge when they involve divergence of the spontaneous polarization field. Impurity ions can partially screen this space charge, reducing long range interactions to local ones. Through studies of the textures of islands on very thin free-standing smectic films, we see evidence of this effect, in which materials with a large spontaneous polarization have static structures described by a large effective bend elastic constant. To address this issue, we calculated the electrostatic free energy of a free standing film of ferroelectric liquid crystal, showing how the screened coulomb interaction contributes a term to the effective bend elastic constant, in the static long wavelength limit. We report experiments which support the main features of this model

    Dynamics of the molecular orientation field coupled to ions in two-dimensional ferroelectric liquid crystals

    Full text link
    Molecular orientation fluctuations in ferroelectric smectic liquid crystals produce space charges, due to the divergence of the spontaneous polarization. These space charges interact with mobile ions, so that one must consider the coupled dynamics of the orientation and ionic degrees of freedom. Previous theory and light scattering experiments on thin free-standing films of ferroelectric liquid crystals have not included this coupling, possibly invalidating their quantitative conclusions. We consider the most important case of very slow ionic dynamics, compared to rapid orientational fluctuations, and focus on the use of a short electric field pulse to quench orientational fluctuations. We find that the resulting change in scattered light intensity must include a term due to the quasistatic ionic configuration, which has previously been ignored. In addition to developing the general theory, we present a simple model to demonstrate the role of this added term
    • …
    corecore