607 research outputs found
Taxation and Education: Using Educational Research to Inform Coherent Policy for the Public Good
In 2006, following a 30-year trend among the US states to remove the property tax from the revenue for public schools, the South Carolina General Assembly enacted Act 388 which replaced the property tax with a one-cent sales tax. The law decreased the budget capacity of school districts thus impacting educational equity and adequacy. This paper describes key policy makersâ and stakeholdersâ interpretations of the pressure for property tax relief and highlight the importance of policy coherence in education finance, taxation, and accountability
Logical Step-Indexed Logical Relations
Appel and McAllester's "step-indexed" logical relations have proven to be a
simple and effective technique for reasoning about programs in languages with
semantically interesting types, such as general recursive types and general
reference types. However, proofs using step-indexed models typically involve
tedious, error-prone, and proof-obscuring step-index arithmetic, so it is
important to develop clean, high-level, equational proof principles that avoid
mention of step indices. In this paper, we show how to reason about binary
step-indexed logical relations in an abstract and elegant way. Specifically, we
define a logic LSLR, which is inspired by Plotkin and Abadi's logic for
parametricity, but also supports recursively defined relations by means of the
modal "later" operator from Appel, Melli\`es, Richards, and Vouillon's "very
modal model" paper. We encode in LSLR a logical relation for reasoning
relationally about programs in call-by-value System F extended with general
recursive types. Using this logical relation, we derive a set of useful rules
with which we can prove contextual equivalence and approximation results
without counting steps
Heterogeneous processes: Laboratory, field, and modeling studies
The efficiencies of chemical families such as ClO(x) and NO(x) for altering the total abundance and distribution of stratospheric ozone are controlled by a partitioning between reactive (active) and nonreactive (reservoir) compounds within each family. Gas phase thermodynamics, photochemistry, and kinetics would dictate, for example, that only about 1 percent of the chlorine resident in the lower stratosphere would be in the form of active Cl or ClO, the remainder existing in the reservoir compounds HCl and ClONO2. The consistency of this picture was recently challenged by the recognition that important chemical transformations take place on polar regions: the Airborne Antarctic Ozone Experiment (AAOE) and the Airborne Arctic Stratospheric Expedition (AASA). Following the discovery of the Antarctic ozone hole, Solomon et al. suggested that the heterogeneous chemical reaction: ClONO2(g)+HCl(s) yields Cl2(g)+HNO3(s) could play a key role in converting chlorine from inactive forms into a species (Cl2) that would rapidly dissociate in sunlight to liberate atomic chlorine and initiate ozone depletion. The symbols (s) and (g) denote solid phase, or adsorbed onto a solid surface, and gas phase, respectively, and represent the approach by which such a reaction is modeled rather than the microscopic details of the reaction. The reaction was expected to be most important at altitudes where PSC's were most prevalent (10 to 25 km), thereby extending the altitude range over which chlorine compounds can efficiently destroy ozone from the 35 to 45 km region (where concentrations of active chlorine are usually highest) to lower altitudes where the ozone concentration is at its peak. This chapter will briefly review the current state of knowledge of heterogeneous processes in the stratosphere, emphasizing those results obtained since the World Meteorological Organization (WMO) conference. Sections are included on laboratory investigations of heterogeneous reactions, the characteristics and climatology of PSC's, stratospheric sulfate aerosols, and evidence of heterogeneous chemical processing
The Whole Counsel of God: A Tribute to E. Herbert Nygren
Herb Nygren has served Taylor University faithfully for over twenty years. As chair of the Department of Biblical Studies, Christian Education, and Philosophy, he has modelled sound teaching and solid scholarship. Upon retirement, he leaves us a legacy of dedication, service, and love for Christ. The members of his department offer these essays as a small token of our esteem.https://pillars.taylor.edu/ayres-collection-books/1019/thumbnail.jp
A mathematical model of tumour & blood pHe regulation: The HCO-3/CO2 buffering system
Malignant tumours are characterised by a low, acidic extracellular pH (pHe) which facilitates invasion and metastasis. Previous research has proposed the potential benefits of manipulating systemic pHe, and recent experiments have highlighted the potential for buffer therapy to raise tumour pHe, prevent metastases, and prolong survival in laboratory mice. To examine the physiological regulation of tumour buffering and investigate how perturbations of the buffering system (via metabolic/respiratory disorders or changes in parameters) can alter tumour and blood pHe, we develop a simple compartmentalised ordinary differential equation model of pHe regulation by the View the MathML source buffering system. An approximate analytical solution is constructed and used to carry out a sensitivity analysis, where we identify key parameters that regulate tumour pHe in both humans and mice. From this analysis, we suggest promising alternative and combination therapies, and identify specific patient groups which may show an enhanced response to buffer therapy. In addition, numerical simulations are performed, validating the model against well-known metabolic/respiratory disorders and predicting how these disorders could change tumour pHe
Universally Coupled Massive Gravity, II: Densitized Tetrad and Cotetrad Theories
Einstein's equations in a tetrad formulation are derived from a linear theory
in flat spacetime with an asymmetric potential using free field gauge
invariance, local Lorentz invariance and universal coupling. The gravitational
potential can be either covariant or contravariant and of almost any density
weight. These results are adapted to produce universally coupled massive
variants of Einstein's equations, yielding two one-parameter families of
distinct theories with spin 2 and spin 0. The theories derived, upon fixing the
local Lorentz gauge freedom, are seen to be a subset of those found by
Ogievetsky and Polubarinov some time ago using a spin limitation principle. In
view of the stability question for massive gravities, the proven non-necessity
of positive energy for stability in applied mathematics in some contexts is
recalled. Massive tetrad gravities permit the mass of the spin 0 to be heavier
than that of the spin 2, as well as lighter than or equal to it, and so provide
phenomenological flexibility that might be of astrophysical or cosmological
use.Comment: 2 figures. Forthcoming in General Relativity and Gravitatio
Design Considerations for Fire Safety
ERAF: 48415Papers presented at the Symposium on Design Considerations for Fire Safety at the Semiannual Meeting of The American Society of Heating, Refrigerating and Air-conditioning Engineer
Working County Lines: Child Criminal Exploitation and Illicit Drug Dealing in Glasgow and Merseyside
This article explores recent developments within the U.K. drug market: that is, the commuting of gang members from major cities to small rural urban areas for the purpose of enhancing their profit from drug distribution. Such practice has come to be known as working âCounty Lines.â We present findings drawn from qualitative research with practitioners working to address serious and organized crime and participants involved in street gangs and illicit drug supply in both Glasgow and Merseyside, United Kingdom. We find evidence of Child Criminal Exploitation (CCE) in County Lines activity, often as a result of debt bondage; but also, cases of young people working the lines of their own volition to obtain financial and status rewards. In conclusion, we put forward a series of recommendations which are aimed at informing police strategy, practitioner intervention, and wider governmental policy to effectively address this growing, and highly problematic, phenomenon
Characterization of Shewanella oneidensis MtrC: a cell-surface decaheme cytochrome involved in respiratory electron transport to extracellular electron acceptors
MtrC is a decaheme c-type cytochrome associated with the outer cell membrane of Fe(III)-respiring species of the Shewanella genus. It is proposed to play a role in anaerobic respiration by mediating electron transfer to extracellular mineral oxides that can serve as terminal electron acceptors. The present work presents the first spectropotentiometric and voltammetric characterization of MtrC, using protein purified from Shewanella oneidensis MR-1. Potentiometric titrations, monitored by UVâvis absorption and electron paramagnetic resonance (EPR) spectroscopy, reveal that the hemes within MtrC titrate over a broad potential range spanning between approximately +100 and approximately -500 mV (vs. the standard hydrogen electrode). Across this potential window the UVâvis absorption spectra are characteristic of low-spin c-type hemes and the EPR spectra reveal broad, complex features that suggest the presence of magnetically spin-coupled low-spin c-hemes. Non-catalytic protein film voltammetry of MtrC demonstrates reversible electrochemistry over a potential window similar to that disclosed spectroscopically. The voltammetry also allows definition of kinetic properties of MtrC in direct electron exchange with a solid electrode surface and during reduction of a model Fe(III) substrate. Taken together, the data provide quantitative information on the potential domain in which MtrC can operate
INTERVAL (investigation of NICE technologies for enabling risk-variable-adjusted-length) dental recalls trial: a multicentre randomised controlled trial investigating the best dental recall interval for optimum, cost-effective maintenance of oral health in dentate adults attending dental primary care
Background
Traditionally, patients at low risk and high risk of developing dental disease have been encouraged to attend dental recall appointments at regular intervals of six months between appointments. The lack of evidence for the effect that different recall intervals between dental check-ups have on patient outcomes, provider workload and healthcare costs is causing considerable uncertainty for the profession and patients, despite the publication of the NICE Guideline on dental recall. The need for primary research has been highlighted in the Health Technology Assessment Groupâs systematic review of routine dental check-ups, which found little evidence to support or refute the practice of encouraging 6-monthly dental check-ups in adults. The more recent Cochrane review on recall interval concluded there was insufficient evidence to draw any conclusions regarding the potential beneficial or harmful effects of altering the recall interval between dental check-ups. There is therefore an urgent need to assess the relative effectiveness and cost-benefit of different dental recall intervals in a robust, sufficiently powered randomised control trial (RCT) in primary dental care.
Methods
This is a four year multi-centre, parallel-group, randomised controlled trial with blinded outcome assessment based in dental primary care in the UK. Practitioners will recruit 2372 dentate adult patients. Patient participants will be randomised to one of three groups: fixed-period six month recall, risk-based recall, or fixed-period twenty-four month recall. Outcome data will be assessed through clinical examination, patient questionnaires and NHS databases. The primary outcomes measure gingival inflammation/bleeding on probing and oral health-related quality of life.
Discussion
INTERVAL will provide evidence for the most clinically-effective and cost-beneficial recall interval for maintaining optimum oral health in dentate adults attending general dental practice
- âŚ