19 research outputs found

    Factors controlling nitrate in ice cores: Evidence from the Dome C deep ice core

    Get PDF
    In order to estimate past changes in atmospheric NOx concentration, nitrate, an oxidation product of NOx, has often been measured in polar ice cores. In the frame of the European Project for Ice Coring in Antarctica (EPICA), a high-resolution nitrate record was obtained by continuous flow analysis (CFA) of a new deep ice core drilled at Dome C. This record allows a detailed comparison of nitrate with other chemical trace substances in polar snow under different climatic regimes. Previous studies showed that it would be difficult to make firm conclusions about atmospheric NOx concentrations based on ice core nitrate without a better understanding of the factors controlling NO3− deposition and preservation. At Dome C, initially high nitrate concentrations (over 500 ppb) decrease within the top meter to steady low values around 15 ppb that are maintained throughout the Holocene ice. Much higher concentrations (averaging 53 ppb) are found in ice from the Last Glacial Maximum (LGM). Combining this information with data from previous sampling elsewhere in Antarctica, it seems that under climatic conditions of the Holocene, temperature and accumulation rate are the key factors determining the NO3− concentration in the ice. Furthermore, ice layers with high acidity show a depletion of NO3−, but higher concentrations are found before and after the acidity layer, indicating that NO3− has been redistributed after deposition. Under glacial conditions, where NO3− shows a higher concentration level and also a larger variability, non-sea-salt calcium seems to act as a stabilizer, preventing volatilization of NO3− from the surface snow layers

    Differential Equations, Mechanics, and Computation

    No full text
    This book provides a conceptual introduction to the theory of ordinary differential equations, concentrating on the initial value problem for equations of evolution and with applications to the calculus of variations and classical mechanics, along with a discussion of chaos theory and ecological models. It has a unified and visual introduction to the theory of numerical methods and a novel approach to the analysis of errors and stability of various numerical solution algorithms based on carefully chosen model problems. While the book would be suitable as a textbook for an undergraduate or elementary graduate course in ordinary differential equations, the authors have designed the text also to be useful for motivated students wishing to learn the material on their own or desiring to supplement an ODE textbook being used in a course they are taking with a text offering a more conceptual approach to the subject

    Accurate diagnosis of spinal muscular atrophy and 22q11.2 deletion syndrome using limited deoxynucleotide triphosphates and high-resolution melting

    No full text
    Abstract Background Copy number variation (CNV) has been implicated in the genetics of multiple human diseases. Spinal muscular atrophy (SMA) and 22q11.2 deletion syndrome (22q11.2DS) are two of the most common diseases which are caused by DNA copy number variations. Genetic diagnostics for these conditions would be enhanced by more accurate and efficient methods to detect the relevant CNVs. Methods Competitive PCR with limited deoxynucleotide triphosphates (dNTPs) and high-resolution melting (HRM) analysis was used to detect 22q11.2DS, SMA and SMA carrier status. For SMA, we focused on the copy number of SMN1 gene. For 22q11.2DS, we analyzed CNV for 3 genes (CLTCL1, KLHL22, and PI4KA) which are located between different region-specific low copy repeats. CFTR was used as internal reference gene for all targets. Short PCR products with separated Tms were designed by uMelt software. Results One hundred three clinical patient samples were pretested for possible SMN1 CNV, including carrier status, using multiplex ligation-dependent probe amplification (MLPA) commercial kit as gold standard. Ninety-nine samples consisting of 56 wild-type and 43 22q11.2DS samples were analyzed for CLTCL1, KLHL22, and PI4KA CNV also using MLPA. These samples were blinded and re-analyzed for the same CNVs using the limited dNTPs PCR with HRM analysis and the results were completely consistent with MLPA. Conclusions Limited dNTPs PCR with HRM analysis is an accurate method for detecting SMN1 and 22q11.2 CNVs. This method can be used quickly, reliably, and economically in large population screening for these diseases

    Spacecraft protective structures design optimization

    No full text
    corecore