347 research outputs found
Universal Heat Conduction in YBa_2Cu_3O_6.9
The thermal conductivity of YBa_2Cu_3O_6.9 was measured at low temperatures
in untwinned single crystals with concentrations of Zn impurities from 0 to 3%
of Cu. A linear term kappa_0/T = 0.19 mW/K^2.cm is clearly resolved as T -> 0,
and found to be virtually independent of Zn concentration. The existence of
this residual normal fluid strongly validates the basic theory of transport in
unconventional superconductors. Moreover, the observed universal behavior is in
quantitative agreement with calculations for a gap function of d-wave symmetry.Comment: Latex file, 4 pages, 3 EPS figures, to appear in Physical Review
Letter
Angular position of nodes in the superconducting gap of YBCO
The thermal conductivity of a YBCO single crystal has been studied as a
function of the relative orientation of the crystal axes and a magnetic field
rotating in the Cu-O planes. Measurements were carried out at several
temperatures below T_c and at a fixed field of 30 kOe. A four-fold symmetry
characteristic of a superconducting gap with nodes at odd multiples of 45
degrees in k-space was resolved. Experiments were performed to exclude a
possible macroscopic origin for such a four-fold symmetry such as sample shape
or anisotropic pinning. Our results impose an upper limit of 10% on the weight
of the s-wave component of the essentially d-wave superconducting order
parameter of YBCO.Comment: 10 pages, 4 figure
Evaluation of exposure-specific risks from two independent samples: A simulation study
<p>Abstract</p> <p>Background</p> <p>Previous studies have proposed a simple product-based estimator for calculating exposure-specific risks (ESR), but the methodology has not been rigorously evaluated. The goal of our study was to evaluate the existing methodology for calculating the ESR, propose an improved point estimator, and propose variance estimates that will allow the calculation of confidence intervals (CIs).</p> <p>Methods</p> <p>We conducted a simulation study to test the performance of two estimators and their associated confidence intervals: 1) current (simple product-based estimator) and 2) proposed revision (revised product-based estimator). The first method for ESR estimation was based on multiplying a relative risk (RR) of disease given a certain exposure by an overall risk of disease. The second method, which is proposed in this paper, was based on estimates of the risk of disease in the unexposed. We then multiply the updated risk by the RR to get the revised product-based estimator. A log-based variance was calculated for both estimators. Also, a binomial-based variance was calculated for the revised product-based estimator. 95% CIs were calculated based on these variance estimates. Accuracy of point estimators was evaluated by comparing observed relative bias (percent deviation from the true estimate). Interval estimators were evaluated by coverage probabilities and expected length of the 95% CI, given coverage. We evaluated these estimators across a wide range of exposure probabilities, disease probabilities, relative risks, and sample sizes.</p> <p>Results</p> <p>We observed more bias and lower coverage probability when using the existing methodology. The revised product-based point estimator exhibited little observed relative bias (max: 4.0%) compared to the simple product-based estimator (max: 93.9%). Because the simple product-based estimator was biased, 95% CIs around this estimate exhibited small coverage probabilities. The 95% CI around the revised product-based estimator from the log-based variance provided better coverage in most situations.</p> <p>Conclusion</p> <p>The currently accepted simple product-based method was only a reasonable approach when the exposure probability is small (< 0.05) and the RR is ≤ 3.0. The revised product-based estimator provides much improved accuracy.</p
Quasiparticle transport in the vortex state of YBa_2Cu_3O_6.9
The effect of vortices on quasiparticle transport in cuprate superconductors
was investigated by measuring the low temperature thermal conductivity of
YBa_2Cu_3O_6.9 in magnetic fields up to 8 T. The residual linear term (as T \to
0) is found to increase with field, directly reflecting the occupation of
extended quasiparticle states. A study for different Zn impurity concentrations
reveals a good agreement with recent calculations for a d-wave superconductor,
thereby shedding light on the nature of scattering by both impurities and
vortices. It also provides a quantitative measure of the gap near the nodes.Comment: 4 pages, 2 included eps figures, significant new analysis wrt other
experiments, to appear in Phys Rev Lett 29 March 199
Thermal Conductivity across the Phase Diagram of Cuprates: Low-Energy Quasiparticles and Doping Dependence of the Superconducting Gap
Heat transport in the cuprate superconductors YBaCuO and
LaSrCuO was measured at low temperatures as a function of
doping. A residual linear term kappa_{0}/T is observed throughout the
superconducting region and it decreases steadily as the Mott insulator is
approached from the overdoped regime. The low-energy quasiparticle gap
extracted from kappa_{0}/T is seen to scale closely with the pseudogap. The
ubiquitous presence of nodes and the tracking of the pseudogap shows that the
overall gap remains of the pure d-wave form throughout the phase diagram, which
excludes the possibility of a complex component (ix) appearing at a putative
quantum phase transition and argues against a non-superconducting origin to the
pseudogap. A comparison with superfluid density measurements reveals that the
quasiparticle effective charge is weakly dependent on doping and close to
unity.Comment: 12 pages, 9 figure
Calibration of muon reconstruction algorithms using an external muon tracking system at the Sudbury Neutrino Observatory
To help constrain the algorithms used in reconstructing high-energy muon events incident on the Sudbury Neutrino Observatory (SNO), a muon tracking system was installed. The system consisted of four planes of wire chambers, which were triggered by scintillator panels. The system was integrated with SNO's main data acquisition system and took data for a total of 95 live days. Using cosmic-ray events reconstructed in both the wire chambers and in SNO's water Cherenkov detector, the external muon tracking system was able to constrain the uncertainty on the muon direction to better than 0.6°
Search for the Standard Model Higgs Boson with the OPAL Detector at LEP
This paper summarises the search for the Standard Model Higgs boson in e+e-
collisions at centre-of-mass energies up to 209 GeV performed by the OPAL
Collaboration at LEP. The consistency of the data with the background
hypothesis and various Higgs boson mass hypotheses is examined. No indication
of a signal is found in the data and a lower bound of 112.7GeV/C^2 is obtained
on the mass of the Standard Model Higgs boson at the 95% CL.Comment: 51 pages, 21 figure
Colour reconnection in e+e- -> W+W- at sqrt(s) = 189 - 209 GeV
The effects of the final state interaction phenomenon known as colour
reconnection are investigated at centre-of-mass energies in the range sqrt(s) ~
189-209 GeV using the OPAL detector at LEP. Colour reconnection is expected to
affect observables based on charged particles in hadronic decays of W+W-.
Measurements of inclusive charged particle multiplicities, and of their angular
distribution with respect to the four jet axes of the events, are used to test
models of colour reconnection. The data are found to exclude extreme scenarios
of the Sjostrand-Khoze Type I (SK-I) model and are compatible with other
models, both with and without colour reconnection effects. In the context of
the SK-I model, the best agreement with data is obtained for a reconnection
probability of 37%. Assuming no colour reconnection, the charged particle
multiplicity in hadronically decaying W bosons is measured to be (nqqch) =
19.38+-0.05(stat.)+-0.08 (syst.).Comment: 30 pages, 9 figures, Submitted to Euro. Phys. J.
Measurement of the Hadronic Photon Structure Function F_2^gamma at LEP2
The hadronic structure function of the photon F_2^gamma is measured as a
function of Bjorken x and of the factorisation scale Q^2 using data taken by
the OPAL detector at LEP. Previous OPAL measurements of the x dependence of
F_2^gamma are extended to an average Q^2 of 767 GeV^2. The Q^2 evolution of
F_2^gamma is studied for average Q^2 between 11.9 and 1051 GeV^2. As predicted
by QCD, the data show positive scaling violations in F_2^gamma. Several
parameterisations of F_2^gamma are in agreement with the measurements whereas
the quark-parton model prediction fails to describe the data.Comment: 4 pages, 2 figures, to appear in the proceedings of Photon 2001,
Ascona, Switzerlan
Saliva microRNA Biomarkers of Cumulative Concussion
Recurrent concussions increase risk for persistent post-concussion symptoms, and may lead to chronic neurocognitive deficits. Little is known about the molecular pathways that contribute to persistent concussion symptoms. We hypothesized that salivary measurement of microribonucleic acids (miRNAs), a class of epitranscriptional molecules implicated in concussion pathophysiology, would provide insights about the molecular cascade resulting from recurrent concussions. This hypothesis was tested in a case-control study involving 13 former professional football athletes with a history of recurrent concussion, and 18 age/sex-matched peers. Molecules of interest were further validated in a cross-sectional study of 310 younger individuals with a history of no concussion (n = 230), a single concussion (n = 56), or recurrent concussions (n = 24). There was no difference in neurocognitive performance between the former professional athletes and their peers, or among younger individuals with varying concussion exposures. However, younger individuals without prior concussion outperformed peers with prior concussion on three balance assessments. Twenty salivary miRNAs differed (adj. p \u3c 0.05) between former professional athletes and their peers. Two of these (miR-28-3p and miR-339-3p) demonstrated relationships (p \u3c 0.05) with the number of prior concussions reported by younger individuals. miR-28-3p and miR-339-5p may play a role in the pathophysiologic mechanism involved in cumulative concussion effects
- …