195 research outputs found
A Calibrated Measurement of the Near-IR Continuum Sky Brightness Using Magellan/FIRE
We characterize the near-IR sky background from 308 observations with the
FIRE spectrograph at Magellan. A subset of 105 observations selected to
minimize lunar and thermal effects gives a continuous, median spectrum from
0.83 to 2.5 microns which we present in electronic form. The data are used to
characterize the broadband continuum emission between atmospheric OH features
and correlate its properties with observing conditions such as lunar angle and
time of night. We find that the moon contributes significantly to the
inter-line continuum in the Y and J bands whereas the observed H band continuum
is dominated by the blended Lorentzian wings of multiple OH line profiles even
at R=6000. Lunar effects may be mitigated in Y and J through careful scheduling
of observations, but the most ambitious near-IR programs will benefit from
allocation during dark observing time if those observations are not limited by
read noise. In Y and J our measured continuum exceeds space-based average
estimates of the Zodiacal light, but it is not readily identified with known
terrestrial foregrounds. If further measurements confirm such a fundamental
background, it would impact requirements for OH-suppressed instruments
operating in this regime.Comment: 25 pages, 11 figures, accepted to PAS
Near-Infrared InGaAs Detectors for Background-limited Imaging and Photometry
Originally designed for night-vision equipment, InGaAs detectors are
beginning to achieve background-limited performance in broadband imaging from
the ground. The lower cost of these detectors can enable multi-band
instruments, arrays of small telescopes, and large focal planes that would be
uneconomical with high-performance HgCdTe detectors. We developed a camera to
operate the FLIR AP1121 sensor using deep thermoelectric cooling and
up-the-ramp sampling to minimize noise. We measured a dark current of 163-
s pix, a read noise of 87- up-the-ramp, and a well depth of
80k-. Laboratory photometric testing achieved a stability of 230 ppm
hr, which would be required for detecting exoplanet transits. InGaAs
detectors are also applicable to other branches of near-infrared time-domain
astronomy, ranging from brown dwarf weather to gravitational wave follow-up.Comment: Submitted to Proc. SPIE, Astronomical Telescopes + Instrumentation
(2014
Precision of a Low-Cost InGaAs Detector for Near Infrared Photometry
We have designed, constructed, and tested an InGaAs near-infrared camera to
explore whether low-cost detectors can make small (<1 m) telescopes capable of
precise (<1 mmag) infrared photometry of relatively bright targets. The camera
is constructed around the 640x512 pixel APS640C sensor built by FLIR
Electro-Optical Components. We designed custom analog-to-digital electronics
for maximum stability and minimum noise. The InGaAs dark current halves with
every 7 deg C of cooling, and we reduce it to 840 e-/s/pixel (with a
pixel-to-pixel variation of +/-200 e-/s/pixel) by cooling the array to -20 deg
C. Beyond this point, glow from the readout dominates. The single-sample read
noise of 149 e- is reduced to 54 e- through up-the-ramp sampling. Laboratory
testing with a star field generated by a lenslet array shows that 2-star
differential photometry is possible to a precision of 631 +/-205 ppm (0.68
mmag) hr^-0.5 at a flux of 2.4E4 e-/s. Employing three comparison stars and
de-correlating reference signals further improves the precision to 483 +/-161
ppm (0.52 mmag) hr^-0.5. Photometric observations of HD80606 and HD80607 (J=7.7
and 7.8) in the Y band shows that differential photometry to a precision of 415
ppm (0.45 mmag) hr^-0.5 is achieved with an effective telescope aperture of
0.25 m. Next-generation InGaAs detectors should indeed enable Poisson-limited
photometry of brighter dwarfs with particular advantage for late-M and L types.
In addition, one might acquire near-infrared photometry simultaneously with
optical photometry or radial velocity measurements to maximize the return of
exoplanet searches with small telescopes.Comment: Accepted to PAS
Pupil slicer design for the NASA-NSF extreme precision Doppler spectrograph concept WISDOM
The WIYN Spectrograph for Doppler Monitoring (WISDOM) was a concept responding to NASA's solicitation for an extreme precision radial velocity instrument for the 3.5 meter WIYN telescope on Kitt Peak in Arizona. In order to meet the spectral resolution requirement of R = 110,000 while maintaining good throughput and a manageable beam diameter, the front end design of the instrument employed a pupil slicing technique wherein a collimated beam is sliced and fed to six separate fibers. This paper presents the optical and mechanical design of the pupil slicer subassembly, a unique method of dealing with thermally induced defocus error, and the methods and results of aligning a prototype
The Incidence of Low-Metallicity Lyman-Limit Systems at z~3.5: Implications for the Cold-Flow Hypothesis of Baryonic Accretion
Cold accretion is a primary growth mechanism of simulated galaxies, yet
observational evidence of "cold flows" at redshifts where they should be most
efficient (-4) is scarce. In simulations, cold streams manifest as
Lyman-limit absorption systems (LLSs) with low heavy-element abundances similar
to those of the diffuse IGM. Here we report on an abundance survey of 17 H
I-selected LLSs at -4.4 which exhibit no metal absorption in SDSS
spectra. Using medium-resolution spectra obtained at Magellan, we derive
ionization-corrected metallicities (or limits) with a Markov-Chain Monte Carlo
sampling that accounts for the large uncertainty in measurements
typical of LLSs. The metal-poor LLS sample overlaps with the IGM in metallicity
and is best described by a model where are drawn from the
IGM chemical abundance distribution. These represent roughly half of all LLSs
at these redshifts, suggesting that 28-40 of the general LLS population at
could trace unprocessed gas. An ancillary sample of ten LLSs without
any a priori metal-line selection is best fit with of
metallicities drawn from the IGM. We compare these results with regions of a
moving-mesh simulation; the simulation finds only half as many baryons in
IGM-metallicity LLSs, and most of these lie beyond the virial radius of the
nearest galaxy halo. A statistically significant fraction of all LLSs have low
metallicity and therefore represent candidates for accreting gas; large-volume
simulations can establish what fraction of these candidates actually lie near
galaxies and the observational prospects for detecting the presumed hosts in
emission.Comment: 19 pages, 17 figures; Submitted to ApJ; Corrected figure 16
The Distribution of Metallicity in the IGM at z~2.5: OVI and CIV Absorption in the Spectra of 7 QSOs
We present a direct measurement of the metallicity distribution function for
the high redshift intergalactic medium. We determine the shape of this function
using survival statistics, which account for both detections and non-detections
of OVI and CIV associated with HI absorption in quasar spectra. Our OVI sample
probes the metal content of ~50% of all baryons at z~2.5. We find a median
intergalactic abundance of [O,C/H]=-2.82; the differential abundance
distribution is approximately lognormal with mean ~-2.85 and
\sigma=0.75 dex. Some 60-70% the Lya forest lines are enriched to observable
levels ([O,C/H]>-3.5) while the remaining ~30% of the lines have even lower
abundances. Thus we have not detected a universal metallicity floor as has been
suggested for some Population III enrichment scenaria. In fact, we argue that
the bulk of the intergalactic metals formed later than the first stars that are
thought to have triggered reionization. We do not observe a significant trend
of decreasing metallicity toward the lower density IGM, at least within regions
that would be characterized as filaments in numerical simulations. However, an
[O/H] enhancement may be present at somewhat high densities. We estimate that
roughly half of all baryons at these redshifts have been enriched to
[O/H]>=-3.5. We develop a simple model for the metallicity evolution of the
IGM, to estimate the chemical yield of galaxies formed prior to z~2.5. We find
that the typical galaxy recycled 0.1-0.4% of its mass back into the IGM as
heavy elements in the first 3 Gyr after the Big Bang.Comment: 23 pages in emulateapj, 19 figures. Accepted to ApJ, pending review
of new changes. Revised comparison between our results and Schaye et al
(2003
Discovery of excess O I absorption towards the z = 6.42 QSO SDSS J1148+5251
We present a search for O I in the spectra of nine 4.9 < z_qso < 6.4 QSOs
taken with Keck/HIRES. We detect six systems with N(O I) > 10^13.7 cm^{-2} in
the redshift intervals where O I 1302 falls redward of the Ly-alpha forest.
Four of these lie towards SDSS J1148+5251 (z_qso = 6.42). This imbalance is
unlikely to arise from variations in sensitivity among our data or from a
statistical fluctuation. The excess O I occurs over a redshift interval that
also contains transmission in Ly-alpha and Ly-beta. Therefore, if these O I
systems represent pockets of neutral gas, then they must occur within or near
regions of the IGM that are highly ionized. In contrast, no O I is detected
towards SDSS J1030+0524 (z_qso = 6.30), whose spectrum shows complete
absorption in Ly-alpha and Ly-beta over \Delta z ~ 0.2. Assuming no ionization
corrections, we measure mean abundance ratios = -0.04 +/- 0.06,
= -0.31 +/- 0.09, and = -0.34 +/- 0.07 (2 sigma), which are
consistent with enrichment dominated by Type II supernovae. The O/Si ratio
limits the fraction of silicon in these systems contributed by metal-free very
massive stars to < 30%, a result which is insensitive to ionization
corrections. The ionic comoving mass densities along the z_qso > 6.2
sightlines, including only the detected systems, are \Omega(O I) = (7.0 +/-
0.6) * 10^{-8}, \Omega(Si II) = (9.6 +/- 0.9) * 10^{-9}, and \Omega(C II) =
(1.5 +/- 0.2) * 10^{-8}.Comment: Submitted to ApJ, with changes to reflect referee's comment
Evidence for a Hard Ionizing Spectrum from a z=6.11 Stellar Population
We present the Magellan/FIRE detection of highly-ionized CIV 1550 and OIII]
1666 in a deep infrared spectrum of the z=6.11 gravitationally lensed low-mass
galaxy RXC J2248.7-4431-ID3, which has previously-known Lyman-alpha. No
corresponding emission is detected at the expected location of HeII 1640. The
upper limit on HeII paired with detection of OIII] and CIV constrains possible
ionization scenarios. Production of CIV and OIII] requires ionizing photons of
2.5-3.5 Ryd, but once in that state their multiplet emission is powered by
collisional excitation at lower energies (~0.5 Ryd). As a pure recombination
line, HeII emission is powered by 4 Ryd ionizing photons. The data therefore
require a spectrum with significant power at 3.5 Ryd but a rapid drop toward
4.0 Ryd. This hard spectrum with a steep drop is characteristic of
low-metallicity stellar populations, and less consistent with soft AGN
excitation, which features more 4 Ryd photons and hence higher HeII flux. The
conclusions based on ratios of metal line detections to Helium non-detection
are strengthened if the gas metallicity is low. RXJ2248-ID3 adds to the growing
handful of reionization-era galaxies with UV emission line ratios distinct from
the general z=2-3 population, in a way that suggests hard ionizing spectra that
do not necessarily originate in AGN.Comment: 7 pages, 4 figures, 1 table. Accepted for publication to ApJ
Dissecting the Gaseous Halos of z~2 Damped Ly Systems with Close Quasar Pairs
We use spectroscopy of close pairs of quasars to study diffuse gas in the
circumgalactic medium (CGM) surrounding a sample of 40 Damped Lya systems
(DLAs). The primary sightline in each quasar pair probes an intervening DLA in
the redshift range 1.6 < z_DLA < 3.6, such that the second quasar sightline
then probes Lya, CII, SiII, and CIV absorption in the CGM transverse to the DLA
to projected distances kpc. Analysis of the Lya profiles in
these CGM sightlines constrains the covering fraction (f_C) of optically thick
HI (having column density N_HI > 10^17.2 cm^-2) to be greater than ~30% within
kpc of DLAs. Strong SiII 1526 absorption with equivalent
width W_1526 > 0.2 Ang occurs with an incidence f_C (W_1526 > 0.2 Ang) =
20(+12/-8)% within kpc, indicating that low-ionization metal
absorption associated with DLAs probes material at a physical distance R_3D <
30 kpc. However, we find that strong CIV 1548 absorption is ubiquitous in these
environments (f_C (W_1548 > 0.2 Ang) = 57(+12/-13)% within
kpc), and in addition exhibits a high degree of kinematic coherence on scales
up to ~175 kpc. We infer that this high-ionization material arises
predominantly in large, quiescent structures extending beyond the scale of the
DLA host dark matter halos rather than in ongoing galactic winds. The Lya
equivalent width in the DLA-CGM is anticorrelated with at >98%
confidence, suggesting that DLAs arise close to the centers of their host halos
rather than on their outskirts. Finally, the average Lya, CII and CIV
equivalent widths are consistent with those measured around z~2 Lyman Break
Galaxies. Assuming that DLAs trace a galaxy population with lower masses and
luminosities, this finding implies that the absorption strength of cool
circumgalactic material has a weak dependence on dark matter halo mass for M_h
< 10^12 M_sun.Comment: Submitted to ApJ. 30 pages, 13 figures, 3 tables, 1 appendix. Uses
emulateapj forma
- …
