24,484 research outputs found

    Looping on the Bloch sphere: Oscillatory effects in dephasing of qubits subject to broad-spectrum noise

    Full text link
    For many implementations of quantum computing, 1/f and other types of broad-spectrum noise are an important source of decoherence. An important step forward would be the ability to back out the characteristics of this noise from qubit measurements and to see if it leads to new physical effects. For certain types of qubits, the working point of the qubit can be varied. Using a new mathematical method that is suited to treat all working points, we present theoretical results that show how this degree of freedom can be used to extract noise parameters and to predict a new effect: noise-induced looping on the Bloch sphere. We analyze data on superconducting qubits to show that they are very near the parameter regime where this looping should be observed.Comment: 4 pages, 3 figure

    Water resource problems of energy projects in the Colorado River Basin

    Get PDF
    The successful development of western coal and oil shale deposits is dependent, to a significant degree, on the availability of adequate water supplies. EQL is involved in a study of the aggregate effects of various energy activities in the upper Colorado River Basin on downstream water quantity and quality. These activities will tend to reduce the available water in the river, and could increase its salinity, which is already so high as to interfere with downstream domestic and agricultural use

    The X-ray Line Emission from the Supernova Remnant W49B

    Get PDF
    The Galactic supernova remnant W49B has one of the most impressive X-ray emission line spectra obtained with the Advanced Satellite for Cosmology and Astronomy (ASCA). We use both plasma line diagnostics and broadband model fits to show that the Si and S emission lines require multiple spectral components. The spectral data do not necessarily require individual elements to be spatially stratified, as suggested by earlier work, although when ASCA line images are considered, it is possible that Fe is stratified with respect to Si and S. Most of the X-ray emitting gas is from ejecta, based on the element abundances required, but is surprisingly close to being in collisional ionization equilibrium. A high ionization age implies a high internal density in a young remnant. The fitted emission measure for W49B indicates a minimum density of 2 cm^-3, with the true density likely to be significantly higher. W49B probably had a Type Ia progenitor, based on the relative element abundances, although a low-mass Type II progenitor is still possible. We find persuasive evidence for Cr and possibly Mn emission in the ASCA spectrum--the first detection of these elements in X-rays from a cosmic source.Comment: 22 pages incl 8 postscript figures, to appear in Ap

    Six-dimensional weak-strong simulations of head-on beam-beam compensation in RHIC

    Full text link
    To compensate the large beam-beam tune spread and beam-beam resonance driving terms in the polarized proton operation in the Relativistic Heavy Ion Collider (RHIC), we will introduce a low-energy DC electron beam into each ring to collide head-on with the opposing proton beam. The device to provide the electron beam is called an electron lens. In this article, using a 6-D weak-strong-beam-beam interaction simulation model, we investigate the effects of head-on beam-beam compensation with electron lenses on the proton beam dynamics in the RHIC 250 GeV polarized proton operation. This article is abridged from the published article [1].Comment: 5 pages, contribution to the ICFA Mini-Workshop on Beam-Beam Effects in Hadron Colliders, CERN, Geneva, Switzerland, 18-22 Mar 201

    Coded Modulation for Satellite Broadcasting

    Get PDF
    In this paper, three-level block coded 8-PSK modulations, suitable for satellite broadcasting of digital TV signals, are presented. A design principle to achieve unequal error protection is introduced. The coding scheme is designed in such a way that the information bits carrying the basic definition TV signal have a lower error rate than the high definition information bits. The large error coefficients, formally associated with standard mapping by set partitioning, are reduced by considering a nonstandard partition of an 8-PSK signal set. The bits-to-signal mapping induced by this partition allows the use of suboptimal low-complexity soft-decision decoding of binary block codes. Parallel operation of the first and second stage decoders is possible, for high data rate transmission. Furthermore, there is no error propagation from the first-stage decoder to the second-stage decoder

    Optimal time decay of the non cut-off Boltzmann equation in the whole space

    Full text link
    In this paper we study the large-time behavior of perturbative classical solutions to the hard and soft potential Boltzmann equation without the angular cut-off assumption in the whole space \threed_x with \DgE. We use the existence theory of global in time nearby Maxwellian solutions from \cite{gsNonCutA,gsNonCut0}. It has been a longstanding open problem to determine the large time decay rates for the soft potential Boltzmann equation in the whole space, with or without the angular cut-off assumption \cite{MR677262,MR2847536}. For perturbative initial data, we prove that solutions converge to the global Maxwellian with the optimal large-time decay rate of O(t^{-\frac{\Ndim}{2}+\frac{\Ndim}{2r}}) in the L^2_\vel(L^r_x)-norm for any 2r2\leq r\leq \infty.Comment: 31 pages, final version to appear in KR

    Concave Switching in Single and Multihop Networks

    Full text link
    Switched queueing networks model wireless networks, input queued switches and numerous other networked communications systems. For single-hop networks, we consider a {(α,g\alpha,g)-switch policy} which combines the MaxWeight policies with bandwidth sharing networks -- a further well studied model of Internet congestion. We prove the maximum stability property for this class of randomized policies. Thus these policies have the same first order behavior as the MaxWeight policies. However, for multihop networks some of these generalized polices address a number of critical weakness of the MaxWeight/BackPressure policies. For multihop networks with fixed routing, we consider the Proportional Scheduler (or (1,log)-policy). In this setting, the BackPressure policy is maximum stable, but must maintain a queue for every route-destination, which typically grows rapidly with a network's size. However, this proportionally fair policy only needs to maintain a queue for each outgoing link, which is typically bounded in number. As is common with Internet routing, by maintaining per-link queueing each node only needs to know the next hop for each packet and not its entire route. Further, in contrast to BackPressure, the Proportional Scheduler does not compare downstream queue lengths to determine weights, only local link information is required. This leads to greater potential for decomposed implementations of the policy. Through a reduction argument and an entropy argument, we demonstrate that, whilst maintaining substantially less queueing overhead, the Proportional Scheduler achieves maximum throughput stability.Comment: 28 page

    Universal Heat Conduction in YBa_2Cu_3O_6.9

    Full text link
    The thermal conductivity of YBa_2Cu_3O_6.9 was measured at low temperatures in untwinned single crystals with concentrations of Zn impurities from 0 to 3% of Cu. A linear term kappa_0/T = 0.19 mW/K^2.cm is clearly resolved as T -> 0, and found to be virtually independent of Zn concentration. The existence of this residual normal fluid strongly validates the basic theory of transport in unconventional superconductors. Moreover, the observed universal behavior is in quantitative agreement with calculations for a gap function of d-wave symmetry.Comment: Latex file, 4 pages, 3 EPS figures, to appear in Physical Review Letter

    Exact solution of a model of qubit dephasing due to telegraph noise

    Full text link
    We present a general and exact formalism for finding the evolution of a quantum system subject to external telegraph noise. The various qubit decoherence rates are determined by the eigenvalues of a transfer matrix. The formalism can be applied to a qubit subject to an arbitrary combination of dephasing and relaxational telegraph noise, in contrast to existing non-perturbative methods that treat only one or the other of these limits. We present 3 applications: 1) We obtain the full qubit dynamics on time scales short compared with the enviromental correlation times. In the strong coupling cases this reveals unexpected oscillations and induced magnetization components; 2) We find in strong coupling case strong violations of the widely used relation 1/T2_2 = 1/2T1_1 + 1/Tϕ_{\phi}, which is a result of perturbation theory; 3) We discuss the effects of bang-bang and spin-echo controls of the qubit dynamics in general settings of the telegraph noises. %The result shows that these methods are not very effective in %reducing decoherence arising from a single telegraph noise. Finally, we discuss the extension of the method to the cases of many telegraph noise sources and multiple qubits. The method still works when white noise is also present.Comment: 7 pages, 6 figures, revised and extende
    corecore