9,131 research outputs found

    Weed Control in Sweet Potatoes

    Get PDF
    Herbicides will control weeds effectively without cultivation in sweet potato fields. And this ISU study indicates cultivation is not necessary for high yields if weeds are controlled chemically

    Work-related psychological health and psychological type among lead elders within the Newfrontiers network of churches in the United Kingdom

    Get PDF
    Building on a series of recent studies concerned with assessing work-related psychological health and psychological type among various groups of church leaders, this study reports new data provided by 134 Lead Elders within the Newfrontiers network of churches in the United Kingdom who completed the Francis Psychological Type Scales (FPTS) together with the two scales of the Francis Burnout Inventory (FBI) concerned with emotional exhaustion and satisfaction in ministry. Compared with other groups of church leaders, Lead Elders within the Newfrontiers network of churches reported lower levels of emotional exhaustion and higher levels of satisfaction in ministry. Compared with other groups of church leaders, there was a higher proportion of extraverts among Lead Elders within the Newfrontiers network of churches. There was only a weak association between psychological type and burnout

    Shear stress fluctuations in the granular liquid and solid phases

    Full text link
    We report on experimentally observed shear stress fluctuations in both granular solid and fluid states, showing that they are non-Gaussian at low shear rates, reflecting the predominance of correlated structures (force chains) in the solidlike phase, which also exhibit finite rigidity to shear. Peaks in the rigidity and the stress distribution's skewness indicate that a change to the force-bearing mechanism occurs at the transition to fluid behaviour, which, it is shown, can be predicted from the behaviour of the stress at lower shear rates. In the fluid state stress is Gaussian distributed, suggesting that the central limit theorem holds. The fibre bundle model with random load sharing effectively reproduces the stress distribution at the yield point and also exhibits the exponential stress distribution anticipated from extant work on stress propagation in granular materials.Comment: 11 pages, 3 figures, latex. Replacement adds journal reference and addresses referee comment

    Quantum indistinguishability from general representations of SU(2n)

    Full text link
    A treatment of the spin-statistics relation in nonrelativistic quantum mechanics due to Berry and Robbins [Proc. R. Soc. Lond. A (1997) 453, 1771-1790] is generalised within a group-theoretical framework. The construction of Berry and Robbins is re-formulated in terms of certain locally flat vector bundles over n-particle configuration space. It is shown how families of such bundles can be constructed from irreducible representations of the group SU(2n). The construction of Berry and Robbins, which leads to a definite connection between spin and statistics (the physically correct connection), is shown to correspond to the completely symmetric representations. The spin-statistics connection is typically broken for general SU(2n) representations, which may admit, for a given value of spin, both bose and fermi statistics, as well as parastatistics. The determination of the allowed values of the spin and statistics reduces to the decomposition of certain zero-weight representations of a (generalised) Weyl group of SU(2n). A formula for this decomposition is obtained using the Littlewood-Richardson theorem for the decomposition of representations of U(m+n) into representations of U(m)*U(n).Comment: 32 pages, added example section 4.

    Finite-element analysis of contact between elastic self-affine surfaces

    Full text link
    Finite element methods are used to study non-adhesive, frictionless contact between elastic solids with self-affine surfaces. We find that the total contact area rises linearly with load at small loads. The mean pressure in the contact regions is independent of load and proportional to the rms slope of the surface. The constant of proportionality is nearly independent of Poisson ratio and roughness exponent and lies between previous analytic predictions. The contact morphology is also analyzed. Connected contact regions have a fractal area and perimeter. The probability of finding a cluster of area aca_c drops as acτa_c^{-\tau} where τ\tau increases with decreasing roughness exponent. The distribution of pressures shows an exponential tail that is also found in many jammed systems. These results are contrasted to simpler models and experiment.Comment: 13 pages, 15 figures. Replaced after changed in response to referee comments. Final two figures change

    Fcc-bcc transition for Yukawa interactions determined by applied strain deformation

    Full text link
    Calculations of the work required to transform between bcc and fcc phases yield a high-precision bcc-fcc transition line for monodisperse point Yukawa (screened-Couloumb) systems. Our results agree qualitatively but not quantitatively with previously published simulations and phenomenological criteria for the bcc-fcc transition. In particular, the bcc-fcc-fluid triple point lies at a higher inverse screening length than previously reported.Comment: RevTex4, 9 pages, 6 figures. Discussion of phase coexistence extended, a few other minor clarifications added, referencing improved. Accepted for publication by Physical Review

    Matching Conditions in Atomistic-Continuum Modeling of Materials

    Full text link
    A new class of matching condition between the atomistic and continuum regions is presented for the multi-scale modeling of crystals. They ensure the accurate passage of large scale information between the atomistic and continuum regions and at the same time minimize the reflection of phonons at the interface. These matching conditions can be made adaptive if we choose appropriate weight functions. Applications to dislocation dynamics and friction between two-dimensional atomically flat crystal surfaces are described.Comment: 6 pages, 4 figure

    Toward the End of Time

    Full text link
    The null-brane space-time provides a simple model of a big crunch/big bang singularity. A non-perturbative definition of M-theory on this space-time was recently provided using matrix theory. We derive the fermion couplings for this matrix model and study the leading quantum effects. These effects include particle production and a time-dependent potential. Our results suggest that as the null-brane develops a big crunch singularity, the usual notion of space-time is replaced by an interacting gluon phase. This gluon phase appears to constitute the end of our conventional picture of space and time.Comment: 31 pages, reference adde

    Dynamic sea surface topography, gravity and improved orbit accuracies from the direct evaluation of SEASAT altimeter data

    Get PDF
    A method for the simultaneous solution of dynamic ocean topography, gravity and orbits using satellite altimeter data is described. A GEM-T1 based gravitational model called PGS-3337 that incorporates Seasat altimetry, surface gravimetry and satellite tracking data has been determined complete to degree and order 50. The altimeter data is utilized as a dynamic observation of the satellite's height above the sea surface with a degree 10 model of dynamic topography being recovered simultaneously with the orbit parameters, gravity and tidal terms in this model. PGS-3337 has a geoid uncertainty of 60 cm root-mean-square (RMS) globally, with the uncertainty over the altimeter tracked ocean being in the 25 cm range. Doppler determined orbits for Seasat, show large improvements, with the sub-30 cm radial accuracies being achieved. When altimeter data is used in orbit determination, radial orbital accuracies of 20 cm are achieved. The RMS of fit to the altimeter data directly gives 30 cm fits for Seasat when using PGS-3337 and its geoid and dynamic topography model. This performance level is two to three times better than that achieved with earlier Goddard earth models (GEM) using the dynamic topography from long-term oceanographic averages. The recovered dynamic topography reveals the global long wavelength circulation of the oceans with a resolution of 1500 km. The power in the dynamic topography recovery is now found to be closer to that of oceanographic studies than for previous satellite solutions. This is attributed primarily to the improved modeling of the geoid which has occurred. Study of the altimeter residuals reveals regions where tidal models are poor and sea state effects are major limitations
    corecore