22 research outputs found

    Magic box and Richard Brautigan

    Get PDF

    Climate Change, Human Health, and Resilience in the Holocene

    Get PDF
    Climate change is an indisputable threat to human health, especially for societies already confronted with rising social inequality, political and economic uncertainty, and a cascade of concurrent environmental challenges. Archaeological data about past climate and environment provide an important source of evidence about the potential challenges humans face and the long-term outcomes of alternative short-term adaptive strategies. Evidence from well-dated archaeological human skeletons and mummified remains speaks directly to patterns of human health over time through changing circumstances. Here, we describe variation in human epidemiological patterns in the context of past rapid climate change (RCC) events and other periods of past environmental change. Case studies confirm that human communities responded to environmental changes in diverse ways depending on historical, sociocultural, and biological contingencies. Certain factors, such as social inequality and disproportionate access to resources in large, complex societies may influence the probability of major sociopolitical disruptions and reorganizations—commonly known as “collapse.” This survey of Holocene human–environmental relations demonstrates how flexibility, variation, and maintenance of Indigenous knowledge can be mitigating factors in the face of environmental challenges. Although contemporary climate change is more rapid and of greater magnitude than the RCC events and other environmental changes we discuss here, these lessons from the past provide clarity about potential priorities for equitable, sustainable development and the constraints of modernity we must address

    Climate change, human health, and resilience in the Holocene

    Get PDF
    Climate change is an indisputable threat to human health, especially for societies already confronted with rising social inequality, political and economic uncertainty, and a cascade of concurrent environmental challenges. Archaeological data about past climate and environment provide an important source of evidence about the potential challenges humans face and the long-term outcomes of alternative short-term adaptive strategies. Evidence from well-dated archaeological human skeletons and mummified remains speaks directly to patterns of human health over time through changing circumstances. Here, we describe variation in human epidemiological patterns in the context of past rapid climate change (RCC) events and other periods of past environmental change. Case studies confirm that human communities responded to environmental changes in diverse ways depending on historical, sociocultural, and biological contingencies. Certain factors, such as social inequality and disproportionate access to resources in large, complex societies may influence the probability of major sociopolitical disruptions and reorganizations—commonly known as “collapse.” This survey of Holocene human–environmental relations demonstrates how flexibility, variation, and maintenance of Indigenous knowledge can be mitigating factors in the face of environmental challenges. Although contemporary climate change is more rapid and of greater magnitude than the RCC events and other environmental changes we discuss here, these lessons from the past provide clarity about potential priorities for equitable, sustainable development and the constraints of modernity we must address

    MISpheroID: a knowledgebase and transparency tool for minimum information in spheroid identity

    Get PDF
    Spheroids are three-dimensional cellular models with widespread basic and translational application across academia and industry. However, methodological transparency and guidelines for spheroid research have not yet been established. The MISpheroID Consortium developed a crowdsourcing knowledgebase that assembles the experimental parameters of 3,058 published spheroid-related experiments. Interrogation of this knowledgebase identified heterogeneity in the methodological setup of spheroids. Empirical evaluation and interlaboratory validation of selected variations in spheroid methodology revealed diverse impacts on spheroid metrics. To facilitate interpretation, stimulate transparency and increase awareness, the Consortium defines the MISpheroID string, a minimum set of experimental parameters required to report spheroid research. Thus, MISpheroID combines a valuable resource and a tool for three-dimensional cellular models to mine experimental parameters and to improve reproducibility. © 2021, The Author(s)

    Climate change, human health, and challenges to resilience in the holocene

    Full text link
    Climate change is a significant threat to human health, especially for societies already confronted with rising social inequality, political and economic uncertainty, and a cascade of concurrent environmental challenges. Archaeological data about climate and environmental change provide a source of evidence about the potential challenges we face and the long-term outcomes of different short-term adaptive strategies employed in the past. Bioarchaeologists and paleopathologists study human health in the Holocene using evidence from archaeological human skeletons and mummified remains. Our research provides a basis for understanding the health impacts of past climate and environmental change within an evolutionary and biocultural framework. Here we provide bioarchaeological case studies from the published literature and discuss their relevance to research priorities outlined in the United Nations Sustainable Development Goals. We discuss the impact of environmental marginalization, famine and nutritional insufficiency, infectious disease, violence, and migration in the past. Although the magnitude and the pace of current global warming exceed the parameters of climate change experienced by past societies, bioarchaeology provides valuable insights into how variation in human historical and socio-cultural circumstances shaped epidemiological patterns across the millennia. It also provides clarity on the constraints of modernity, including limits to mobility and increasingly high levels of structural inequality. By demonstrating how past human societies perceived and experimented with solutions to climate and environmental challenges, bioarchaeology contributes to current prediction, planning, and policy-making efforts for a more equitable and sustainable future

    Twenty-first century bioarchaeology: Taking stock and moving forward

    Full text link
    This article presents outcomes from a Workshop entitled “Bioarchaeology: Taking Stock and Moving Forward,” which was held at Arizona State University (ASU) on March 6–8, 2020. Funded by the National Science Foundation (NSF), the School of Human Evolution and Social Change (ASU), and the Center for Bioarchaeological Research (CBR, ASU), the Workshop's overall goal was to explore reasons why research proposals submitted by bioarchaeologists, both graduate students and established scholars, fared disproportionately poorly within recent NSF Anthropology Program competitions and to offer advice for increasing success. Therefore, this Workshop comprised 43 international scholars and four advanced graduate students with a history of successful grant acquisition, primarily from the United States. Ultimately, we focused on two related aims: (1) best practices for improving research designs and training and (2) evaluating topics of contemporary significance that reverberate through history and beyond as promising trajectories for bioarchaeological research. Among the former were contextual grounding, research question/hypothesis generation, statistical procedures appropriate for small samples and mixed qualitative/quantitative data, the salience of Bayesian methods, and training program content. Topical foci included ethics, social inequality, identity (including intersectionality), climate change, migration, violence, epidemic disease, adaptability/plasticity, the osteological paradox, and the developmental origins of health and disease. Given the profound changes required globally to address decolonization in the 21st century, this concern also entered many formal and informal discussions

    Twenty-first century bioarchaeology: Taking stock and moving forward

    Get PDF
    This article presents outcomes from a Workshop entitled “Bioarchaeology: Taking Stock and Moving Forward,” which was held at Arizona State University (ASU) on March 6–8, 2020. Funded by the National Science Foundation (NSF), the School of Human Evolution and Social Change (ASU), and the Center for Bioarchaeological Research (CBR, ASU), the Workshop's overall goal was to explore reasons why research proposals submitted by bioarchaeologists, both graduate students and established scholars, fared disproportionately poorly within recent NSF Anthropology Program competitions and to offer advice for increasing success. Therefore, this Workshop comprised 43 international scholars and four advanced graduate students with a history of successful grant acquisition, primarily from the United States. Ultimately, we focused on two related aims: (1) best practices for improving research designs and training and (2) evaluating topics of contemporary significance that reverberate through history and beyond as promising trajectories for bioarchaeological research. Among the former were contextual grounding, research question/hypothesis generation, statistical procedures appropriate for small samples and mixed qualitative/quantitative data, the salience of Bayesian methods, and training program content. Topical foci included ethics, social inequality, identity (including intersectionality), climate change, migration, violence, epidemic disease, adaptability/plasticity, the osteological paradox, and the developmental origins of health and disease. Given the profound changes required globally to address decolonization in the 21st century, this concern also entered many formal and informal discussions
    corecore