20 research outputs found

    Mapping the Galactic Halo. V. Sgr dSph Tidal Debris 60 degrees from the Main Body

    Full text link
    As part of the Spaghetti Project Survey (SPS) we have detected a concentration of giant stars well above expectations for a smooth halo model. The position (l~350, b~50) and distance (~50 kpc) of this concentration match those of the Northern over-density detected by SDSS (Yanny et al. 2000, Ivezic et al. 2000). We find additional evidence for structure at ~80 kpc in the same direction. We present radial velocities for many of these stars, including the first published results from the 6.5m Magellan telescope. The radial velocities for stars in these structures are in excellent agreement with models of the dynamical evolution of the Sgr dwarf tidal debris, whose center is 60 degrees away. The metallicity of stars in these streams is lower than that of the main body of the Sgr dwarf, which may indicate a radial metallicity gradient prior to disruption.Comment: 10 pages, 3 figures accepted in Astrophysical Journal Letter

    Deep HST Imaging of Sextans A I. The Spatially Resolved Recent Star Formation History

    Get PDF
    We have measured stellar photometry from deep Cycle 7 Hubble Space Telescope/WFPC2 imaging of the dwarf irregular galaxy Sextans A. The imaging was taken in three filters: F555W (VV; 8 orbits), F814W (II; 16 orbits), and F656N (Hα\alpha; 1 orbit). Combining these data with Cycle 5 WFPC2 observations provides nearly complete coverage of the optically visible portion of the galaxy. The Cycle 7 observations are nearly 2 magnitudes more sensitive than the Cycle 5 observations, which provides unambiguous separation of the faint blue helium burning stars (BHeB stars) from contaminant populations. The depth of the photometry allows us to compare recent star formation histories recovered from both the main sequence (MS) stars and the BHeB stars for the last 300 Myr. The excellent agreement between these independent star formation rate (SFR) calculations is a resounding confirmation for the legitimacy of using the BHeB stars to calculate the recent SFR. Using the BHeB stars we have calculated the global star formation history over the past 700 Myr. The history calculated from the Cycle 7 data is remarkably identical to that calculated from the Cycle 5 data, implying that both halves of the galaxy formed stars in concert. We have also calculated the spatially resolved star formation history, combining the fields from the Cycle 5 and Cycle 7 data. Our interpretation of the pattern of star formation is that it is an orderly stochastic process.Comment: 27 pages, 14 figures, 2 mpeg movies, accepted in the Astronomical Journa

    A WFPC2 Study of the Resolved Stellar Population of the Pegasus Dwarf Irregular Galaxy (DDO 216)

    Get PDF
    The stellar population of the Pegasus dwarf irregular galaxy is investigated in images taken in the F439W (B), F555W (V), and F814W (I) bands with WFPC2. These and ground-based data are combined to produce color-magnitude diagrams which show the complex nature of the stellar population in this small galaxy. A young (< 0.5 Gyr) main sequence stellar component is present and clustered in two centrally-located clumps, while older stars form a more extended disk or halo. The colors of the main sequence require a relatively large extinction of A_V = 0.47 mag. The mean color of the well-populated red giant branch is relatively blue, consistent with a moderate metallicity young, or older, metal-poor stellar population. The red giant branch also has significant width in color, implying a range of stellar ages and/or metallicities. A small number of extended asymptotic giant branch stars are found beyond the red giant branch tip. Near the faint limits of our data is a populous red clump superimposed on the red giant branch. Efforts to fit self-consistent stellar population models based on the Geneva stellar evolution tracks yield a revised distance of 760 kpc. Quantitative fits to the stellar population are explored as a means to constrain the star formation history. The numbers of main sequence and core helium-burning blue loop stars require that the star formation rate was higher in the recent past, by a factor of 3-4 about 1 Gyr ago. Unique results cannot be obtained for the star formation history over longer time baselines without better information on stellar metallicities and deeper photometry. The youngest model consistent with the data contains stars with constant metallicity of Z = 0.001 which mainly formed 2-4 Gyr ago. Even at its peak of star forming activity, the Pegasus dwarf most likely remained relatively dim with M_V ~ -14.Comment: 46 pages, 16 figures, 1 tabl

    The Recent Evolution of the Dwarf Starburst Galaxy NGC 625 from Hubble Space Telescope Imaging

    Full text link
    New HST/WFPC2 imaging of the dwarf starburst galaxy NGC 625 is presented. These data, 80% complete to V and I magnitudes of 26.0 and 25.3, respectively, allow us to study the recent star formation history of NGC 625. We derive a tip of the red giant branch (TRGB) distance modulus of 27.95+/-0.07, corresponding to a distance of 3.89+/-0.22 Mpc, and a location on the far side of the Sculptor Group. NGC 625 has a well-defined radial stellar population gradient, evidenced by a central concentration of young MS stars and an RGB/AGB ratio that increases with galactocentric distance. The prominent AGB is very red, and RGB stars are detected far from the central star forming regions. Using H Alpha and H Beta narrow band imaging and previous optical spectroscopy we identify substantial and varying internal extinction (A_V = 0.0 to 0.6 mag) associated with the central active star formation regions. To better understand the effects of internal extinction on the analysis of young stellar populations, synthetic models are presented which, for the first time, examine and account for this effect. Using the luminous blue helium burning stars, we construct a simple model of the recent (< 100 Myr) star formation in which an elevated but declining star formation rate has been present over this entire period. This is at odds with the presence of spectroscopic W-R features in the major star formation region which imply a short duration (<= 5 Myr) for the recent starburst. This suggests that starbursts displaying W-R features are not necessarily all of a short duration. Finally, we speculate on the possible causes of the present burst of star formation in this apparently isolated galaxy, and compare it to other nearby, well-studied dwarf starburst systems.Comment: 56 pages, including 15 figures (2 in color). Scheduled to appear in AJ, December, 2003. Full-resolution version may be obtained at http://www.astro.umn.edu/~Cannon/n625.p

    Mapping the Galactic Halo. IV. Finding Distant Giants Reliably with the Washington System

    No full text
    We critically examine the use of the Washington photometric system (with the DDO51 filter) for identifying distant halo giants. While this is the most powerful photometric technique for isolating G and K giant stars, spectroscopic follow-up of giant candidates is vital. There are two situations in which interlopers outnumber genuine giants in the diagnostic M - 51/M -T2 plot and are indistinguishable photometrically from the giants. (1) In deep surveys covering tens of square degrees, very metal-poor halo dwarfs are a significant contaminant. An example is our survey of the outer halo, where these metal-poor dwarfs dominate the number of photometric giant candidates at magnitudes fainter than V = 18 and cannot be isolated photometrically. (2) In deep surveys of smaller areas with low photometric precision, most objects in i:he giant region of the color-color plot are dwarfs whose photometric errors have moved them there. Color errors in M - 51 and M - T2 need to be smaller than 0.03 mag to avoid this problem. An example of a survey whose photometric errors place the giant identifications under question is the survey for extratidal giants around the Carina dwarf spheroidal galaxy of Majewski et al. Accurate photometry and spectroscopic follow-up of giant candidates are essential when using the Washington system to identify the rare outer halo giants
    corecore