508 research outputs found

    Primer-dependent and primer-independent initiation of double stranded RNA synthesis by purified <i>arabidopsis</i> RNA-dependent RNA polymerases RDR2 and RDR6

    Get PDF
    Cellular RNA-dependent RNA polymerases (RDRs) are fundamental components of RNA silencing in plants and many other eukaryotes. In Arabidopsis thaliana genetic studies have demonstrated that RDR2 and RDR6 are involved in the synthesis of double stranded RNA (dsRNA) from single stranded RNA (ssRNA) targeted by RNA silencing. The dsRNA is subsequently cleaved by the ribonuclease DICER-like into secondary small interfering RNAs (siRNAs) that reinforce and/or maintain the silenced state of the target RNA. Models of RNA silencing propose that RDRs could use primer-independent and primer-dependent initiation to generate dsRNA from a transcript targeted by primary siRNA or microRNA (miRNA). However, the biochemical activities of RDR proteins are still partly understood. Here, we obtained active recombinant RDR2 and RDR6 in a purified form. We demonstrate that RDR2 and RDR6 have primer-independent and primer-dependent RNA polymerase activities with different efficiencies. We further show that RDR2 and RDR6 can initiate dsRNA synthesis either by elongation of 21- to 24- nucleotides RNAs hybridized to complementary RNA template or by elongation of self-primed RNA template. These findings provide new insights into our understanding of the molecular mechanisms of RNA silencing in plants

    Risk assessment of new sequencing data on GM maize event MIR604

    Full text link
    In 2009 and 2010, the EFSA GMO Panel concluded the assessment of genetically modified (GM) maizes MIR604, MIR604 × GA21, MIR604 × Bt11 and MIR604 × GA21 × Bt11. These maizes were found to be as safe as their conventional counterparts and other appropriate comparators with respect to potential effects on human and animal health and the environment. On 23 July 2015, the European Commission (EC) received from Syngenta new nucleic acid sequencing data on maize event MIR604 and updated bioinformatic analyses using the new sequencing data. EC tasked EFSA to analyse these data and to indicate whether the previous conclusions of the EFSA GMO Panel on the above-listed GM maizes remain valid. The EFSA GMO Panel used the appropriate principles described in its guidelines for the risk assessment of GM plants to analyse the received data. The new sequencing data indicated a single base pair difference compared to the sequencing data originally provided, located in a non-coding region of the insert. which had already been present in the original plant material used for the risk assessment. Thus, with the exception of bioinformatics analyses, the studies performed for the risk assessment remain valid. The new sequencing data and the bioinformatic analyses performed on the new sequence did not give rise to safety issues. Therefore, the GMO Panel concludes that the original risk assessment of event MIR604 as a single and as a part of stacked events remains valid

    Annual post-market environmental monitoring (PMEM) report on the cultivation of genetically modified maize MON 810 in 2014 from Monsanto Europe S.A.

    Get PDF
    Following a request from the European Commission, the Panel on Genetically Modified Organisms of the European Food Safety Authority (GMO Panel) assessed the annual post-market environmental monitoring (PMEM) report for the 2014 growing season of maize MON 810 provided by Monsanto Europe S.A. The GMO Panel concludes that the insect resistance monitoring data do not indicate a decrease in susceptibility of field Iberian populations of corn borers to the Cry1Ab protein over the 2014 season. However, as the methodology for insect resistance monitoring remained unchanged compared to previous PMEM reports, the GMO Panel reiterates its previous recommendations for improvement of the insect resistance management plan. The GMO Panel considers that the farmer alert system to report complaints regarding product performance could complement the information obtained from the laboratory bioassays, but encourages the consent holder to provide more information in order to be in a position to appraise its usefulness. The data on general surveillance activities do not indicate any unanticipated adverse effects on human and animal health or the environment arising from the cultivation of maize MON 810 cultivation in 2014. The GMO Panel reiterates its previous recommendations to improve the methodology for the analysis of farmer questionnaires and conduct of the literature review in future annual PMEM reports on maize MON 810. The GMO Panel urges the consent holder to consider how to make best use of the information recorded in national registers to optimise sampling for farmer questionnaires, and requests to continue reviewing and discussing relevant scientific publications on possible adverse effects of maize MON 810 on rove beetles. Also, the GMO Panel encourages relevant parties to continue developing a methodological framework to use existing networks in the broader context of environmental monitorin

    Plant RNA virus fitness predictability: contribution of genetic and environmental factors

    Get PDF
    [EN] Forecasting plant virus emergence depends on identifying the factors that determine the distribution of genetic variants within the primary host as well as across potential new hosts. It is crucial to determine: (i) the distribution of mutational fitness effects (DMFE) on the primary host, (ii) how it changes on different hosts, (iii) the way in which multiple mutations interact in determining viral fitness in the primary host, and (iv) whether this interaction is host-dependent. To illustrate points (i) and (ii), this paper reviews recent reports showing that the DMFE for a potyvirus markedly differs between natural and non-natural hosts. Changes in genetic variance for fitness are the main cause of the observed pattern among related hosts, whereas sign pleiotropy mainly explains differences observed among unrelated hosts. To illustrate point (iii), comments are made on experiments showing significant epistasis among random pairs of mutations in the potyvirus genome. A large fraction of the interactions correspond to the reciprocal sign epistasis, meaning that the sign of the effects of mutations at two loci are mutually dependent. Finally, to illustrate point (iv), evidence is presented that epistatic interactions for an RNA virus varied among hosts, with magnitude epistasis being stronger in the primary host but becoming weaker as host's taxonomic relatedness decreased. The existence of all these interactions jeopardizes the prediction of the fitness and evolutionary fate of a given mutation, as it will depend on the genetic background but also on the host wherein the virus replicates.The authors thank Stephanie Bedhomme, Jose M. Cuevas and Susanna K. Remold for insightful discussions and suggestions. This work was supported by grants BFU2009-06993 and BFU2012-30805 from Spanish Direccion General de Investigacion Cientifica y Tecnica to SFE. JL was supported by a JAE-pre contract from CSIC.Elena Fito, SF.; Lalic, J. (2013). Plant RNA virus fitness predictability: contribution of genetic and environmental factors. Plant Pathology. 62(10-18):10-18. https://doi.org/10.1111/ppa.12102S10186210-1

    Scientific Opinion on application EFSA‐GMO‐BE‐2013‐117 for authorisation of genetically modified maize MON 87427 × MON 89034 × NK603 and subcombinations independently of their origin, for food and feed uses, import and processing submitted under Regulation (EC) No 1829/2003 by Monsanto Company

    Get PDF
    Scientific opinionRequestor: Competent Authority of BelgiumQuestion number: EFSA-Q-2013-00765In this opinion, the EFSA Panel on Genetically Modified Organisms (GMO Panel) assessed the three-event stack maize MON 87427 9 MON 89034 9 NK603 and its three subcombinations, independently of their origin. The GMO Panel has previously assessed the three single events combined to produce this three-event stack maize and did not identify safety concerns. No new data on the single events, leading to modification of the original conclusions on their safety, were identified. Based on the molecular, agronomic, phenotypic and compositional characteristics, the combination of the single maize events and of the newly expressed proteins in the three-event stack maize did not give rise to issues regarding food and feed safety or nutrition. In the case of accidental release of viable grains of maize MON 87427 9 MON 89034 9 NK603 into the environment, the three-event stack maize would not raise environmental safety concerns. The GMO Panel concludes that the threeevent stack maize is as safe and as nutritious as the non-GM comparator and the tested non-GM reference varieties in the context of its scope. The GMO Panel considered that its previous conclusions on the two-event stack maize MON 89034 9 NK603 remain valid. For the two maize subcombinations for which no experimental data were provided the GMO Panel assessed the likelihood of interactions among the single events, and concluded that their combination would not raise safety concerns. These two subcombinations are therefore expected to be as safe as the single events, the previously assessed maize MON 89034 9 NK603 and maize MON 87427 9 MON 89034 9 NK603. Since the post-market environmental monitoring plan for the three-event stack maize does not include any provisions for the two subcombinations not previously assessed, the GMO Panel recommended the applicant to revise the plan accordingly

    Technical Note on the quality of DNA sequencing for the molecular characterisation of genetically modified plants

    Get PDF
    As part of the risk assessment (RA) requirements for genetically modified (GM) plants, according to Regulation (EU) No 503/2013 and the EFSA guidance on the RA of food and feed from GM plants (EFSA GMO Panel, 2011), applicants need to perform a molecular characterisation of the DNA sequences inserted in the GM plant genome. The European Commission has mandated EFSA to develop a technical note to the applicants on, and checking of, the quality of the methodology, analysis and reporting covering complete sequencing of the insert and flanking regions, insertion site analysis of the GM event, and generational stability and integrity. This Technical Note puts together requirements and recommendations for when DNA sequencing is part of the molecular characterisation of GM plants, in particular for the characterisation of the inserted genetic material at each insertion site and flanking regions, the determination of the copy number of all detectable inserts, and the analysis of the genetic stability of the inserts, when addressed by Sanger sequencing or NGS. This document reflects the current knowledge in scientific‐technical methods for generating and verifying, in a standardised manner, DNA sequencing data in the context of RA of GM plants. From 1 October 2018, this Technical Note will replace the JRC guideline of 2016 (updated April 2017) related to the verification and quality assessment of the sequencing of the insert(s) and flanking regions. It does not take into consideration the verification and validation of the detection method which remains under the remit of the JRC
    corecore