29 research outputs found

    Parotid Gland Stem Cell Sparing Radiation Therapy for Patients With Head and Neck Cancer:A Double-Blind Randomized Controlled Trial

    Get PDF
    BACKGROUND: Radiotherapy for head and neck cancer (HNC) frequently leads to salivary gland damage and subsequent xerostomia. The radiation response of parotid glands of rats, mice, and patients critically depends on dose to its stem cells, mainly located in the gland's main ducts (stem cell rich (SCR) region). Therefore, this double-blind randomized controlled trial aimed to test the hypothesis that parotid gland stem cell sparing radiotherapy preserves parotid gland function better than currently-used whole parotid gland sparing radiotherapy. METHODS: HNC patients (n=102) treated with definitive radiotherapy were randomized between standard parotid sparing and stem cell sparing (SCS) techniques. The primary endpoint was >75% reduction in parotid gland saliva production compared to pretreatment production (FLOW12M). Secondary endpoints were several aspects of xerostomia 12 months after treatment. RESULTS: Fifty-four patients were assigned to the standard arm and 48 to the SCS arm. Only dose to the SCR regions (contralateral 16 and 11 Gy (p=0.004) and ipsilateral 26 and 16 Gy (p=0.001), standard and SCS arm respectively) and pretreatment patient-rated daytime xerostomia (35% and 13% (p=0.01), standard and SCS arm respectively) differed significantly between the arms. In the SCS arm, 1 patient (2.8%) experienced FLOW12M compared to 2 (4.9%) in the standard arm (p=1.00). However, a trend towards better relative parotid gland salivary function in favor of SCS radiotherapy was shown. Moreover, multivariable analysis showed that mean contralateral SCR region dose was the strongest dosimetric predictor for moderate-to-severe patient-rated daytime xerostomia and grade ≥2 physician-rated xerostomia, the latter including complaints of alteration in diet. CONCLUSIONS: No significant better parotid function was observed in SCS radiotherapy. However, additional multivariable analysis showed that dose to the SCR region was more predictive for development of parotid gland function related xerostomia endpoints, than dose to the entire parotid gland

    Lack of DNA Damage Response at Low Radiation Doses in Adult Stem Cells Contributes to Organ Dysfunction

    Get PDF
    Purpose: Radiotherapy for head and neck cancer may result in serious side effects, such as hyposalivation, impairing the patient's quality of life. Modern radiotherapy techniques attempt to reduce the dose to salivary glands, which, however, results in low-dose irradiation of the tissue stem cells. Here we assess the low-dose sensitivity of tissue stem cells and the consequences for tissue function. Experimental Design: Postirradiation rat salivary gland secretory function was determined after pilocarpine induction. Murine and patient-derived salivary gland and thyroid gland organoids were irradiated and clonogenic survival was assessed. The DNA damage response (DDR) was analyzed in organoids and modulated using different radiation modalities, chemical inhibition, and genetic modification. Results: Relative low-dose irradiation to the high-density stem cell region of rat salivary gland disproportionally impaired function. Hyper-radiosensitivity at doses = 1 Gy, was observed in salivary gland and thyroid gland organoid cultures. DDR modulation resulted in diminished, or even abrogated, relative radioresistance. Furthermore, inhibition of the DDR protein ATM impaired DNA repair after 1 Gy, but not 0.25 Gy. Irradiation of patient-derived salivary gland organoid cells showed similar responses, whereas a single 1 Gy dose to salivary gland-derived stem cells resulted in greater survival than clinically relevant fractionated doses of 4 x 0.25 Gy. Conclusions: We show that murine and human glandular tissue stem cells exhibit a dose threshold in DDR activation, resulting in low-dose hyper-radiosensitivity, with clinical implications in radiotherapy treatment planning. Furthermore, our results from patient-derived organoids highlight the potential of organoids to study normal tissue responses to radiation. (C) 2018 AACR
    corecore