52 research outputs found

    Whole grain-rich diet reduces body weight and systemic low-grade inflammation without inducing major changes of the gut microbiome: a randomised cross-over trial

    Get PDF
    Objective To investigate whether a whole grain diet alters the gut microbiome and insulin sensitivity, as well as biomarkers of metabolic health and gut functionality. Design 60 Danish adults at risk of developing metabolic syndrome were included in a randomised cross-over trial with two 8-week dietary intervention periods comprising whole grain diet and refined grain diet, separated by a washout period of ≥6 weeks. The response to the interventions on the gut microbiome composition and insulin sensitivity as well on measures of glucose and lipid metabolism, gut functionality, inflammatory markers, anthropometry and urine metabolomics were assessed. Results 50 participants completed both periods with a whole grain intake of 179±50 g/day and 13±10 g/day in the whole grain and refined grain period, respectively. Compliance was confirmed by a difference in plasma alkylresorcinols (p<0.0001). Compared with refined grain, whole grain did not significantly alter glucose homeostasis and did not induce major changes in the faecal microbiome. Also, breath hydrogen levels, plasma short-chain fatty acids, intestinal integrity and intestinal transit time were not affected. The whole grain diet did, however, compared with the refined grain diet, decrease body weight (p<0.0001), serum inflammatory markers, interleukin (IL)-6 (p=0.009) and C-reactive protein (p=0.003). The reduction in body weight was consistent with a reduction in energy intake, and IL-6 reduction was associated with the amount of whole grain consumed, in particular with intake of rye. Conclusion Compared with refined grain diet, whole grain diet did not alter insulin sensitivity and gut microbiome but reduced body weight and systemic low-grade inflammation

    A low-gluten diet induces changes in the intestinal microbiome of healthy Danish adults

    Get PDF
    \ua9 2018, The Author(s). Adherence to a low-gluten diet has become increasingly common in parts of the general population. However, the effects of reducing gluten-rich food items including wheat, barley and rye cereals in healthy adults are unclear. Here, we undertook a randomised, controlled, cross-over trial involving 60 middle-aged Danish adults without known disorders with two 8-week interventions comparing a low-gluten diet (2 g gluten per day) and a high-gluten diet (18 g gluten per day), separated by a washout period of at least six weeks with habitual diet (12 g gluten per day). We find that, in comparison with a high-gluten diet, a low-gluten diet induces moderate changes in the intestinal microbiome, reduces fasting and postprandial hydrogen exhalation, and leads to improvements in self-reported bloating. These observations suggest that most of the effects of a low-gluten diet in non-coeliac adults may be driven by qualitative changes in dietary fibres

    A Taxonomically-informed Mass Spectrometry Search Tool for Microbial Metabolomics Data

    Get PDF
    MicrobeMASST, a taxonomically-informed mass spectrometry (MS) search tool, tackles limited microbial metabolite annotation in untargeted metabolomics experiments. Leveraging a curated database of >60,000 microbial monocultures, users can search known and unknown MS/MS spectra and link them to their respective microbial producers via MS/MS fragmentation patterns. Identification of microbial-derived metabolites and relative producers, without a priori knowledge, will vastly enhance the understanding of microorganisms’ role in ecology and human health

    Stool energy density is positively correlated to intestinal transit time and related to microbial enterotypes

    No full text
    BACKGROUND: It has been hypothesised that the gut microbiota causally affects obesity via its capacity to extract energy from the diet. Yet, evidence elucidating the role of particular human microbial community structures and determinants of microbiota-dependent energy harvest is lacking. RESULTS: Here, we investigated whether energy extraction from the diet in 85 overweight adults, estimated by dry stool energy density, was associated with intestinal transit time and variations in microbial community diversity and overall structure stratified as enterotypes. We hypothesised that a slower intestinal transit would allow for more energy extraction. However, opposite of what we expected, the stool energy density was positively associated with intestinal transit time. Stratifications into enterotypes showed that individuals with a Bacteroides enterotype (B-type) had significantly lower stool energy density, shorter intestinal transit times, and lower alpha-diversity compared to individuals with a Ruminococcaceae enterotype (R-type). The Prevotella (P-type) individuals appeared in between the B- and R-type. The differences in stool energy density between enterotypes were not explained by differences in habitual diet, intake of dietary fibre or faecal bacterial cell counts. However, the R-type individuals showed higher urinary and faecal levels of microbial-derived proteolytic metabolites compared to the B-type, suggesting increased colonic proteolysis in the R-type individuals. This could imply a less effective colonic energy extraction in the R-type individuals compared to the B-type individuals. Notably, the R-type had significantly lower body weight compared to the B-type. CONCLUSIONS: Our findings suggest that gut microbial energy harvest is diversified among individuals by intestinal transit time and associated gut microbiome ecosystem variations. A better understanding of these associations could support the development of personalised nutrition and improved weight-loss strategies. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s40168-022-01418-5

    Effects of a wholegrain-rich diet on markers of colonic fermentation and bowel function and their associations with the gut microbiome:a randomised controlled cross-over trial

    No full text
    Background: Diets rich in whole grains are associated with health benefits. Yet, it remains unclear whether the benefits are mediated by changes in gut function and fermentation.Objective: We explored the effects of whole-grain vs. refined-grain diets on markers of colonic fermentation and bowel function, as well as their associations with the gut microbiome.Methods: Fifty overweight individuals with increased metabolic risk and a high habitual intake of whole grains (~69 g/day) completed a randomised cross-over trial with two 8-week dietary intervention periods comprising a whole-grain diet (≥75 g/day) and a refined-grain diet (&lt;10 g/day), separated by a washout period of ≥6 weeks. A range of markers of colonic fermentation and bowel function were assessed before and after each intervention.Results: The whole-grain diet increased the levels of faecal butyrate (p = 0.015) and caproate (p = 0.013) compared to the refined-grain diet. No changes in other faecal SCFA, BCFA or urinary levels of microbial-derived proteolytic markers between the two interventions were observed. Similarly, faecal pH remained unchanged. Faecal pH did however increase (p = 0.030) after the refined-grain diet compared to the baseline. Stool frequency was lower at the end of the refined-grain period compared to the end of the whole-grain diet (p = 0.001). No difference in faecal water content was observed between the intervention periods, however, faecal water content increased following the whole-grain period compared to the baseline (p = 0.007). Dry stool energy density was unaffected by the dietary interventions. Nevertheless, it explained 4.7% of the gut microbiome variation at the end of the refined-grain diet, while faecal pH and colonic transit time explained 4.3 and 5%, respectively. Several butyrate-producers (e.g., Faecalibacterium, Roseburia, Butyriciococcus) were inversely associated with colonic transit time and/or faecal pH, while the mucin-degraders Akkermansia and Ruminococcaceae showed the opposite association.Conclusion: Compared with the refined-grain diet, the whole-grain diet increased faecal butyrate and caproate concentrations as well as stool frequency, emphasising that differences between whole and refined grains affect both colonic fermentation and bowel habits.<br/
    • …
    corecore