49 research outputs found

    I-17 EPIGENETICS AND CARTILAGE DEGENERATION

    No full text

    Physiological cell death of chondrocytes in vivo is not confined to apoptosis: new observations on the mammalian growth plate

    No full text
    Chondrocytes at the lower zone of the growth plate must be eliminated to facilitate longitudinal growth; this is generally assumed to involve apoptosis. We attempted to provide definitive electron-microscopic evidence of apoptosis in chondrocytes of physes and chondroepiphyses in the rabbit. We were, however, unable to find a single chondrocyte with the ultrastructure of ‘classical’ apoptosis in vivo, although such a cell was found in vitro. Instead, condensed chondrocytes had a convoluted nucleus with patchy chromatin condensations while the cytoplasm was dark with excessive amounts of endoplasmic reticulum. These cells were termed ‘dark chondrocytes’. A detailed study of their ultrastructure combined with localisation methods in situ suggested a different mechanism of programmed cell death. In addition, another type of death was identified among the immature chondrocytes of the chondroepiphysis. These cells had the same nucleus as dark chondrocytes, but the lumen of the endoplasmic reticulum had expanded to fill the entire non-nuclear space, and all cytoplasm and organelles had been reduced to dark, worm-like inclusions. Since these cells appeared to be ‘in limbo’, they were termed ‘paralysed’ cells. It is proposed that ‘dark chondrocytes’ and ‘paralysed cells’ are examples of physiological cell death which does not involve apoptosis. It is possible that the confinement of chondrocytes within their lacunae, which would prevent phagocytosis of apoptotic bodies, necessitates different mechanisms of eliminatio

    Chondroptosis: a variant of apoptotic cell death in chondrocytes?

    No full text
    Evidence has accumulated in recent years that programmed cell death (PCD) is not necessarily synonymous with the classical apoptosis, as defined by Kerr and Wyllie, but that cells use a variety of pathways to undergo cell death, which are reflected by different morphologies. Although chondrocytes with the hallmark features of classical apoptosis have been demonstrated in culture, such cells are extremely rare in vivo. The present review focuses on the morphological differences between dying chondrocytes and classical apoptotic cells. We propose the term chondroptosis to reflect the fact that such cells are undergoing apoptosis in a non-classical manner that appears to be typical of programmed chondrocyte death in vivo. Unlike classical apoptosis, chondroptosis involves an initial increase in the endoplasmic reticulum and Golgi apparatus, reflecting an increase in protein synthesis. The increased ER membranes also segment the cytoplasm and provide compartments within which cytoplasm and organelles are digested. In addition, destruction occurs within autophagic vacuoles and cell remnants are blebbed into the lacunae. Together these processes lead to complete self-destruction of the chondrocyte as evidenced by the presence of empty lacunae. It is speculated that the endoplasmic reticulum pathway of apoptosis plays a greater role in chondroptosis than receptor-mediated or mitochondrial pathways and that lysosomal proteases are at least as important as caspases. Because chondroptosis does not depend on phagocytosis, it may be more advantageous in vivo, where chondrocytes are isolated within their lacunae. At present the initiation factors or the molecular pathways involved in chondroptosis remain unclear

    Osteoarthritis: pathobiology - targets and ways for therapeutic intervention. [In: Drug Delivery in Degenerative Joint Disease]

    No full text
    Osteoarthritis is first and foremost the ongoing destruction of the articular cartilages of joints. Therefore, the extracellular matrix and the cells of the articular cartilages are the primary targets of osteoarthritis therapy. This tries to inhibit enzymatic destruction of the extracellular cartilage matrix as well as the modification of the cellular phenotype of the chondrocytes: cell degeneration and cell death are alongside anabolic activation and stabilization of the cellular phenotype of major interest. However, apart from the cartilage and its cells, other tissues of the joints are also important for the symptoms of the disease, which basically all originate outside the articular cartilage. In addition, changes in the subchondral bone as well as the synovial capsule and membrane are important at least for the progression of the disease process. All the named tissues offer different directions and ways for therapeutic intervention

    Expression of ADAM-TS4 by chondrocytes in osteoarthritis in relation to changes in DNA methylation status

    No full text
    In osteoarthritis (OA) there is a loss of matrix components, especially aggrecan, which is a major structural component important for the integrity and function of articular cartilage. The breakdown of aggrecan is mediated by enzymes from the ADAM-TS (a disintegrin and metalloproteinase with thrombospondin motifs) family and recent studies have suggested that, in humans, ADAM-TS4 (aggrecanase-1) plays a major role. Articular chondrocytes do not express ADAM-TS4 in contrast to clonal OA chondrocytes. Since in any somatic cell non-expressed genes are thought to be silenced by DNA methylation in the promoter region, the aims of the project were twofold: 1. to localize enzyme expression for ADAM-TS4 by immunocytochemistry and 2. to determine whether ‘unsilencing’ (i.e. DNA de-methylation) in the promoter of ADAM-TS4 was associated with the abnormal enzyme synthesis.Using immunocytochemistry, we confirmed that there is an increased expression of ADAM-TS4 in OA chondrocytes, which initially occurs in chondrocytes of the superficial zone. As the Mankin score increases, ADAM-TS4 positive chondrocytes were found in duplets, then quadruplets until, at Mankin score >10, all the cells in a typical OA clone were immunopositive for ADAM-TS4, suggesting that abnormal enzyme expression was inherited by daughter cells. DNA was extracted from femoral head cartilage of 24 patients, who had undergone hip replacement surgery for either symptomatic OA or following a fracture of neck of femur (#NOF). The latter was used as control due to the inverse relationship between OA and osteoporosis. For OA samples, it was important to sample only those regions for which immunocytochemistry had shown the presence of ADAM-TS4 synthesizing cells, i.e. the superficial zones near the weight-bearing region. DNA methylation only occurs at cytosines of the sequence 5'...CG...3', the so-called CpG sites. To determine methylation status of specific CpG sites, methylation sensitive restriction enzymes were used, which will only cut DNA in the absence of methylation. By designing PCR primers that bracketed these sites, presence or absence of PCR bands could distinguish between methylated and non-methylated CpGs respectively. The ADAM-TS4 promoter contains a total of 13 CpG sites. Using restriction enzyme/primers combinations, it was possible to analyze 7 of these sites for methylation status. In the control group, all 7 CpG sites were methylated, while there was an overall 49% decrease of methylation in the OA group (p=<0.0001). Some of the CpG sites were more consistently demethylated then others, one site at –753bp upstream from the transcription start site, showed a 86% decrease in methylation in OA compared to the control group (p=0.0005), while at other sites the decrease in methylation ranged from 36–50%. Conclusions. This study confirmed by immunocytochemistry that ADAM-TS4 is produced by OA chondrocytes, contributing to the degradation of their matrix. This abnormal enzyme expression is associated with DNA methylation. If a causal relationship could be proven in the future, then DNA de-methylation might play an important role in the pathogenesis of osteoarthritis and future therapies might be directed at influencing the methylation status

    Pathobiology of osteoarthritis: pathomechanisms and potential therapeutic targets

    No full text
    Osteoarthritis, a degenerative joint disease, is the most disabling condition of the Western world. It affects first and foremost the articular cartilages and leads to a molecular and supramolecular destruction of the extracellular cartilage matrix. In addition, the cells, the chondrocytes, show severe alterations of their phenotype: they get anabolically and catabolically activated, change accordingly their gene expression pattern, lose their differentiated phenotype, and undergo focally cell death and cell degeneration. All these processes represent potential targets for therapeutic intervention and drug development. Apart from the cartilage itself, however, other joint tissues are also involved in the disease: thus, the synovial capsule and membrane as well as the subchondral bone account not only for most of the symptoms of the disease, but are also presumably involved in the progression of the degenerative process. Both, inflammation and stiffening within the joint capsule accelerate joint destruction. Stiffening of the subchondral bone increases the mechanical stress over the overlying cartilage during physiological movement. Altogether, there is a plethora of tissues, disease processes and targets for treating osteoarthritic joint degeneration, which will need to be followed up systematically in the future
    corecore