1,726 research outputs found

    Water regulates the residence time of Benzamidine in Trypsin

    Full text link
    We simulate with state-of-the-art enhanced sampling techniques the binding of Benzamidine to Trypsin which is a much studied and paradigmatic ligand-protein system. We use machine learning methods and in particular Time-lagged Independent Component Analysis to determine efficient collective coordinates. These coordinates are used to perform On-the-fly Probability Enhanced Sampling simulations, which we adapt to calculate also the ligand residence time. Our results, both static and dynamic, are in good agreement with experiments. We underline the role of water in the unbinding process and find that the presence of a water molecule located at the bottom of the binding pocket allows via a network of hydrogen bonds the ligand to be released into the solution. On a finer scale, even when unbinding is allowed, another water molecule further modulates the exit time

    Inelastic electron injection in a water chain

    Get PDF
    Irradiation of biological matter triggers a cascade of secondary particles that interact with their surroundings, resulting in damage. Low-energy electrons are one of the main secondary species and electron-phonon interaction plays a fundamental role in their dynamics. We have developed a method to capture the electron-phonon inelastic energy exchange in real time and have used it to inject electrons into a simple system that models a biological environment, a water chain. We simulated both an incoming electron pulse and a steady stream of electrons and found that electrons with energies just outside bands of excited molecular states can enter the chain through phonon emission or absorption. Furthermore, this phonon-assisted dynamical behaviour shows great sensitivity to the vibrational temperature, highlighting a crucial controlling factor for the injection and propagation of electrons in water

    The role of water in host-guest interaction

    Full text link
    One of the main applications of atomistic computer simulations is the calculation of ligand binding energies. The accuracy of these calculations depends on the force field quality and on the thoroughness of configuration sampling. Sampling is an obstacle in modern simulations due to the frequent appearance of kinetic bottlenecks in the free energy landscape. Very often this difficulty is circumvented by enhanced sampling techniques. Typically, these techniques depend on the introduction of appropriate collective variables that are meant to capture the system's degrees of freedom. In ligand binding, water has long been known to play a key role, but its complex behaviour has proven difficult to fully capture. In this paper we combine machine learning with physical intuition to build a non-local and highly efficient water-describing collective variable. We use it to study a set of of host-guest systems from the SAMPL5 challenge. We obtain highly accurate binding energies and good agreement with experiments. The role of water during the binding process is then analysed in some detail

    OneOPES, a Combined Enhanced Sampling Method to Rule Them All

    Get PDF
    Enhanced sampling techniques have revolutionized molecular dynamics (MD) simulations, enabling the study of rare events and the calculation of free energy differences in complex systems. One of the main families of enhanced sampling techniques uses physical degrees of freedom called collective variables (CVs) to accelerate a system’s dynamics and recover the original system’s statistics. However, encoding all the relevant degrees of freedom in a limited number of CVs is challenging, particularly in large biophysical systems. Another category of techniques, such as parallel tempering, simulates multiple replicas of the system in parallel, without requiring CVs. However, these methods may explore less relevant high-energy portions of the phase space and become computationally expensive for large systems. To overcome the limitations of both approaches, we propose a replica exchange method called OneOPES that combines the power of multireplica simulations and CV-based enhanced sampling. This method efficiently accelerates the phase space sampling without the need for ideal CVs, extensive parameters fine tuning nor the use of a large number of replicas, as demonstrated by its successful applications to protein–ligand binding and protein folding benchmark systems. Our approach shows promise as a new direction in the development of enhanced sampling techniques for molecular dynamics simulations, providing an efficient and robust framework for the study of complex and unexplored problems

    Rare Event Kinetics from Adaptive Bias Enhanced Sampling

    Full text link
    We introduce a novel enhanced sampling approach named OPES flooding for calculating the kinetics of rare events from atomistic molecular dynamics simulation. This method is derived from the On-the-fly-Probability-Enhanced-Sampling (OPES) approach [Invernizzi and Parrinello, JPC Lett. 2020], which has been recently developed for calculating converged free energy surfaces for complex systems. In this paper, we describe the theoretical details of the OPES flooding technique and demonstrate the application on three systems of increasing complexity: barrier crossing in a two-dimensional double well potential, conformational transition in the alanine dipeptide in gas phase, and the folding and unfolding of the chignolin polypeptide in aqueous environment. From extensive tests, we show that the calculation of accurate kinetics not only requires the transition state to be bias-free, but the amount of bias deposited should also not exceed the effective barrier height measured along the chosen collective variables. In this vein, the possibility of computing rates from biasing suboptimal order parameters has also been explored. Furthermore, we describe the choice of optimum parameter combinations for obtaining accurate results from limited computational effort
    • …
    corecore