3 research outputs found

    Exploring the Relationship between BODIPY Structure and Spectroscopic Properties to Design Fluorophores for Bioimaging

    Get PDF
    Designing chromophores for biological applications requires a fundamental understanding of how the chemical structure of a chromophore influences its photophysical properties. We here describe the synthesis of a library of BODIPY dyes, exploring diversity at various positions around the BODIPY core. The results show that the nature and position of substituents have a dramatic effect on the spectroscopic properties. Substituting in a heavy atom or adjusting the size and orientation of a conjugated system provides a means of altering the spectroscopic profiles with high precision. The insight from the structure–activity relationship was applied to devise a new BODIPY dye with rationally designed photochemical properties including absorption towards the near‐infrared region. The dye also exhibited switch‐on fluorescence to enable visualisation of cells with high signal‐to‐noise ratio without washing‐out of unbound dye. The BODIPY‐based probe is non‐cytotoxic and compatible with staining procedures including cell fixation and immunofluorescence microscopy
    corecore