6 research outputs found

    Accretion Flow Properties of EXO 1846-031 During its Multi-Peaked Outburst After Long Quiescence

    Full text link
    We study the recent outburst of the black hole candidate EXO 1846-031 which went into an outburst in 2019 after almost 34 years in quiescence. We use archival data from Swift/XRT, MAXI/GSC, NICER/XTI and NuSTAR/FPM satellites/instruments to study the evolution of the spectral and temporal properties of the source during the outburst. Low energy X-ray flux of the outburst shows multiple peaks making it a multipeak outburst. Evolving type-C quasi-periodic oscillations (QPOs) are observed in the NICER data in the hard, hard intermediate and soft intermediate states. We use the physical Two Component Advective Flow (TCAF) model to analyze the combined spectra of multiple satellite instruments. According to the TCAF model, the accreting matter is divided into Keplerian and sub-Keplerian parts, and the variation in the observed spectra in different spectral states arises out of the variable contributions of these two types of accreting matter in the total accretion rate. Studying the evolution of the accretion rates and other properties of the accretion flow obtained from the spectral analysis, we show how the multiple peaks in the outburst flux arises out of discontinuous supply and different radial velocities of two types of accreting matter from the pile-up radius. We detect an Fe emission line at ∼6.6\sim6.6 keV in the hard and the intermediate states in the NICER spectra. We determine the probable mass of the black hole to be 12.43−0.03+0.14 M⊙12.43^{+0.14}_{-0.03}~M_\odot from the spectral analysis with the TCAF model. We also estimate viscous time scale of the source in this outburst to be ∼8\sim 8 days from the peak difference of the Keplerian and sub-Keplerian mass accretion rates.Comment: 15 pages, 8 Figures, 2 Tables (In Communication ApJ

    Properties of Faint X-ray Activity of XTE J1908+094 in 2019

    Full text link
    We study the properties of the faint X-ray activity of Galactic transient black hole candidate XTE J1908+094 during its 2019 outburst. Here, we report the results of detailed spectral and temporal analysis during this outburst using observations from Nuclear Spectroscopic Telescope Array (NuSTAR). We have not observed any quasi-periodic-oscillations (QPOs) in the power density spectrum (PDS). The spectral study suggests that the source remained in the softer (more precisely, in the soft–intermediate) spectral state during this short period of X-ray activity. We notice a faint but broad Fe Kα emission line at around 6.5 keV. We also estimate the probable mass of the black hole to be 6.5−0.7+0.5M⊙, with 90% confidence
    corecore