1,536 research outputs found

    VLT Diffraction Limited Imaging and Spectroscopy in the NIR: Weighing the black hole in Centaurus A with NACO

    Full text link
    We present high spatial resolution near-infrared spectra and images of the nucleus of Centaurus A (NGC 5128) obtained with NAOS-CONICA at the VLT. The adaptive optics corrected data have a spatial resolution of 0.06" (FWHM) in K- and 0.11" in H-band, four times higher than previous studies. The observed gas motions suggest a kinematically hot disk which is orbiting a central object and is oriented nearly perpendicular to the nuclear jet. We model the central rotation and velocity dispersion curves of the [FeII] gas orbiting in the combined potential of the stellar mass and the (dominant) black hole. Our physically most plausible model, a dynamically hot and geometrically thin gas disk, yields a black hole mass of M_bh = (6.1 +0.6/-0.8) 10^7 M_sun. As the physical state of the gas is not well understood, we also consider two limiting cases: first a cold disk model, which completely neglects the velocity dispersion; it yields an M_bh estimate that is almost two times lower. The other extreme case is to model a spherical gas distribution in hydrostatic equilibrium through Jeans equation. Compared to the hot disk model the best-fit black hole mass increases by a factor of 1.5. This wide mass range spanned by the limiting cases shows how important the gas physics is even for high resolution data. Our overall best-fitting black hole mass is a factor of 2-4 lower than previous measurements. With our revised M_bh estimate, Cen A's offset from the M_bh-sigma relation is significantly reduced; it falls above this relation by a factor of ~2, which is close to the intrinsic scatter of this relation. (Abridged)Comment: 12 pages, 14 figures, including minor changes following the referee report; accepted for publication in The Astrophysical Journa

    HST/STIS Spectra of Nuclear Star Clusters in Spiral Galaxies: Dependence of Age and Mass On Hubble Type

    Full text link
    (Abridged) We study the nuclear star clusters in spiral galaxies of various Hubble types using spectra obtained with STIS on-board HST. We observed the nuclear clusters in 40 galaxies, selected from two previous HST/WFPC2 imaging surveys. The spectra provide a better separation of cluster light from underlying galaxy light than is possible with ground-based spectra. To infer the star formation history, metallicity and dust extinction, we fit weighted superpositions of single-age stellar population templates to the spectra. The luminosity-weighted age ranges from 10 Myrs to 10 Gyrs. The stellar populations of NCs are generally best fit as a mixture of populations of different ages. This indicates that NCs did not form in a single event, but instead they had additional star formation long after the oldest stars formed. On average, the sample clusters in late-type spirals have a younger luminosity-weighted mean age than those in early-type spirals (log(age/yr) = 8.37+/-0.25 vs. 9.23+/-0.21). The average cluster masses are smaller in late-type spirals than in early-type spirals (log(M/Msun) = 6.25+/-0.21 vs. 7.63+/-0.24), and exceed the masses typical of globular clusters. The cluster mass correlates strongly with both the Hubble type of the host galaxy and the luminosity of its bulge. The latter correlation has the same slope as the well-known correlation between supermassive black hole mass and bulge luminosity. The properties of both nuclear clusters and black holes are therefore intimately connected to the properties of the host galaxy.Comment: AJ submitted (original submission Nov 30, 2005, present version includes changes based on referee recommendations). 69 pages, 16 figures, 7 table

    Improved photometry of SDSS crowded field images: Structure and dark matter content in the dwarf spheroidal galaxy Leo I

    Full text link
    We explore how well crowded field point-source photometry can be accomplished with SDSS data: We present a photometric pipeline based on DoPhot, and tuned for analyzing crowded-field images from the SDSS. Using Monte Carlo simulations we show that the completeness of source extraction is above 80% to i < 21 (AB) and a stellar surface density of about 200 sq.amin. Hence, a specialized data pipeline can efficiently be used for e.g. nearby resolved galaxies in SDSS images, where the standard SDSS photometric package Photo, when applied in normal survey mode, gives poor results. We apply our pipeline to an area of about 3.55sq.deg. around the dwarf spheroidal galaxy (dSph) Leo I, and construct a high S/N star-count map of Leo I via an optimized filter in color-magnitude space (g,r,i). Although the radial surface-density profile of the dwarf deviates from the best fit empirical King model towards outer radii, we find no evidence for tidal debris out to a stellar surface-density of 4*10^(-3) of the central value. We determine the total luminosity of Leo I, and model its mass using the spherical and isotropic Jeans equation. Assuming that 'mass follows light' we constrain a lower limit of the total mass of the dSph to be (1.7+/-0.2)*10^7 Msol. Contrary, if the mass in Leo I is dominated by a constant density dark-matter (DM) halo, then the mass within the central 12' is (2+/-0.6)*10^8 Msol. This leads to a mass-to-light ratio of >>6 (Ic_sol), and possibly >75 if the DM halo dominates the mass and extends further out than 12'. In summary, our results show that Leo I is a symmetric, relaxed and bound system; this supports the idea that Leo I is a dark-matter dominated system.Comment: 13 pages, 11 figures; accepted for publication in A

    Spectroscopic Redshifts for Seven Lens Galaxies

    Full text link
    We report VLT observations of 11 lensed quasars, designed to measure the redshifts of their lens galaxies. We successfully determined the redshifts for seven systems, five of which were previously unknown. The securely measured redshifts for the lensing galaxies are: HE0047-1756 z=0.408; PMNJ0134-0931 z=0.766; HE0230-2130 z=0.522; HE0435-1223 z=0.455; SDSS0924+021 z=0.393; LBQS1009-025 z=0.871; and WFIJ2033-472 z=0.658. For four additional systems (BRI0952-0115, Q1017-207, Q1355-2257 and PMNJ1632-003) we estimate tentative redshifts based on some features in their spectra.Comment: 8 pages, ApJ, submitte

    The Tully-Fisher Relation of Barred Galaxies

    Full text link
    We present new data exploring the scaling relations, such as the Tully-Fisher relation (TFR), of bright barred and unbarred galaxies. A primary motivation for this study is to establish whether barredness correlates with, and is a consequence of, virial properties of galaxies. Various lines of evidence suggest that dark matter is dominant in disks of bright unbarred galaxies at 2.2 disk scale lengths, the point of peak rotation for a pure exponential disk. We test the hypothesis that the TF plane of barred high surface brightness galaxies is offset from the mean TFR of unbarred galaxies, as might be expected if barred galaxies are ``maximal'' in their inner parts. We use existing and new TF data to search for basic structural differences between barred and unbarred galaxies. Our new data consist of 2-dimensional Halpha velocity fields derived from SparsePak integral field spectroscopy (IFS) and V,I-band CCD images collected at the WIYN Observatory for 14 strongly barred galaxies. We use WIYN/SparsePak (2-D) velocity fields to show that long-slit (1-D) spectra yield reliable circular speed measurements at or beyond 2.2 disk scale lengths, far from any influence of the bar. This enables us to consider line width measurements from extensive TF surveys which include barred and nonbarred disks and derive detailed scaling relation comparisons. We find that for a given luminosity, barred and unbarred galaxies have comparable structural and dynamical parameters, such as peak velocities, scale lengths, or colors. In particular, the location of a galaxy in the TF plane is independent of barredness. In a global dynamical sense, barred and unbarred galaxies behave similarly and are likely to have, on average, comparable fractions of luminous and dark matter at a given radius. (abridged)Comment: Accepted for publication in the ApJ (September 1, 2003 issue, v594). Appendix figures with I-band image and superimposed 2-D velocity field plus rotation curves must be downloaded separately (due to size constraints) from http://www.astro.ubc.ca/people/courteau/public/courteau03_TFbars.ps.g

    New Observations of the Interstellar Medium in the Lyman Break Galaxy MS 1512-cB58

    Full text link
    We present the results of a detailed study of the interstellar medium of MS 1512-cB58, an L* Lyman break galaxy at z = 2.7276, based on new spectral observations obtained with the Echelle Spectrograph and Imager on the Keck II telescope at 58 km/s resolution. We focus in particular on the chemical abundances and kinematics of the interstellar gas and our main findings are as follows. Even at this relatively early epoch, the ISM of this galaxy is already highly enriched in elements released by Type II supernovae; the abundances of O, Mg, Si, P, and S are all about 2/5 of their solar values. In contrast, N and the Fe-peak elements Mn, Fe, and Ni are underabundant by a factor of about 3. Based on current ideas of stellar nucleosynthesis, these results can be understood if most of the metal enrichment in cB58 has taken place within the last 300 million years, the timescale for the release of N from intermediate mass stars. cB58 appears to be an example of a galaxy in the process of converting its gas into stars on a few dynamical timescales; quite possibly we are witnessing the formation of a galactic bulge or an elliptical galaxy. The energetic star formation activity has stirred the interstellar medium to high velocities of up to 1000 km/s. The net effect is a bulk outflow of the ISM at a speed of 255 km/s and at a rate which exceeds the star formation rate. It is unclear whether this gas will be lost or retained by the galaxy. We point out that the chemical and kinematic properties of cB58 are markedly different from those of most damped Lyman alpha systems at the same redshift.Comment: 38 pages, LaTeX, 9 Postscript Figures. Accepted for publication in the Astrophysical Journal. Sections 3.3 and 5.3 expanded, and two additional figures included, following referee's repor

    The Broad-Line and Narrow-Line Regions of the LINER NGC 4579

    Full text link
    We report the discovery of an extremely broad H-alpha emission line in the LINER nucleus of NGC 4579. From ground-based observations, the galaxy was previously known to contain a Type 1 nucleus with a broad H-alpha line of FWHM = 2300 km/s and FWZI ~ 5000 km/s. New spectra obtained with the Hubble Space Telescope and a 0.2 arcsec-wide slit reveal an H-alpha component with FWZI ~ 18,000 km/s. The line is not obviously double-peaked, but it does possess shoulders on the red and blue sides which resemble the H-alpha profiles of double-peaked emitters such as NGC 4203 and NGC 4450. This similarity suggests that the very broad H-alpha profile in NGC 4579 may represent emission from an accretion disk. Three such objects have been found recently in two HST programs which have targeted a total of 30 galaxies, demonstrating that double-peaked or extremely broad-line emission in LINERs must be much more common than would be inferred from ground-based surveys. The ratio of the narrow [S II] 6716, 6731 lines shows a pronounced gradient indicating a steep rise in density toward the nucleus. The direct detection of a density gradient within the inner arcsecond of the narrow-line region confirms expectations from previous observations of linewidth-critical density correlations in several LINERs.Comment: 8 pages, includes 3 figures. To appear in The Astrophysical Journa

    The structural properties and star formation history of Leo T from deep LBT photometry

    Full text link
    We present deep, wide-field g and r photometry of the transition type dwarf galaxy Leo T, obtained with the blue arm of the Large Binocular Telescope. The data confirm the presence of both very young (5 Gyr) stars. We study the structural properties of the old and young stellar populations by preferentially selecting either population based on their color and magnitude. The young population is significantly more concentrated than the old population, with half-light radii of 104+-8 and 148+-16 pc respectively, and their centers are slightly offset. Approximately 10% of the total stellar mass is estimated to be represented by the young stellar population. Comparison of the color-magnitude diagram (CMD) with theoretical isochrones as well as numerical CMD-fitting suggest that star formation began over 10 Gyr ago and continued in recent times until at least a few hundred Myr ago. The CMD-fitting results are indicative of two distinct star formation bursts, with a quiescent period around 3 Gyr ago, albeit at low significance. The results are consistent with no metallicity evolution and [Fe/H] ~ -1.5 over the entire age of the system. Finally, the data show little if any sign of tidal distortion of Leo T.Comment: 8 pages, 9 figures, some small textual changes, accepted for publication in the Astrophysical Journa
    • 

    corecore