53 research outputs found

    Recommender system for ablation lines to treat complex atrial tachycardia

    Get PDF
    Background and Objective: Planning the optimal ablation strategy for the treatment of complex atrial tachycardia (CAT) is a time consuming task and is error-prone. Recently, directed network mapping, a technology based on graph theory, proved to efficiently identify CAT based solely on data of clinical interventions. Briefly, a directed network was used to model the atrial electrical propagation and reentrant activities were identified by looking for closed-loop paths in the network. In this study, we propose a recommender system, built as an optimization problem, able to suggest the optimal ablation strategy for the treatment of CAT. Methods: The optimization problem modeled the optimal ablation strategy as that one interrupting all reentrant mechanisms while minimizing the ablated atrial surface. The problem was designed on top of directed network mapping. Considering the exponential complexity of finding the optimal solution of the problem, we introduced a heuristic algorithm with polynomial complexity. The proposed algorithm was applied to the data of i) 6 simulated scenarios including both left and right atrial flutter; and ii) 10 subjects that underwent a clinical routine. Results: The recommender system suggested the optimal strategy in 4 out of 6 simulated scenarios. On clinical data, the recommended ablation lines were found satisfactory on 67% of the cases according to the clinician’s opinion, while they were correctly located in 89%. The algorithm made use of only data collected during mapping and was able to process them nearly real-time. Conclusions: The first recommender system for the identification of the optimal ablation lines for CAT, based solely on the data collected during the intervention, is presented. The study may open up interesting scenarios for the application of graph theory for the treatment of CAT

    Machine Learning Using a Single-Lead ECG to Identify Patients With Atrial Fibrillation-Induced Heart Failure

    Get PDF
    AIMS: Atrial fibrillation (AF) and heart failure often co-exist. Early identification of AF patients at risk for AF-induced heart failure (AF-HF) is desirable to reduce both morbidity and mortality as well as health care costs. We aimed to leverage the characteristics of beat-to-beat-patterns in AF to prospectively discriminate AF patients with and without AF-HF. METHODS: A dataset of 10,234 5-min length RR-interval time series derived from 26 AF-HF patients and 26 control patients was extracted from single-lead Holter-ECGs. A total of 14 features were extracted, and the most informative features were selected. Then, a decision tree classifier with 5-fold cross-validation was trained, validated, and tested on the dataset randomly split. The derived algorithm was then tested on 2,261 5-min segments from six AF-HF and six control patients and validated for various time segments. RESULTS: The algorithm based on the spectral entropy of the RR-intervals, the mean value of the relative RR-interval, and the root mean square of successive differences of the relative RR-interval yielded an accuracy of 73.5%, specificity of 91.4%, sensitivity of 64.7%, and PPV of 87.0% to correctly stratify segments to AF-HF. Considering the majority vote of the segments of each patient, 10/12 patients (83.33%) were correctly classified. CONCLUSION: Beat-to-beat-analysis using a machine learning classifier identifies patients with AF-induced heart failure with clinically relevant diagnostic properties. Application of this algorithm in routine care may improve early identification of patients at risk for AF-induced cardiomyopathy and improve the yield of targeted clinical follow-up

    Machine learning enables noninvasive prediction of atrial fibrillation driver location and acute pulmonary vein ablation success using the 12-lead ECG

    Get PDF
    Background: Atrial fibrillation (AF) is the most common supraventricular arrhythmia, characterized by disorganized atrial electrical activity, maintained by localized arrhythmogenic atrial drivers. Pulmonary vein isolation (PVI) allows to exclude PV-related drivers. However, PVI is less effective in patients with additional extra-PV arrhythmogenic drivers. Objectives: To discriminate whether AF drivers are located near the PVs vs extra-PV regions using the noninvasive 12-lead electrocardiogram (ECG) in a computational and clinical framework, and to computationally predict the acute success of PVI in these cohorts of data. Methods: AF drivers were induced in 2 computerized atrial models and combined with 8 torso models, resulting in 1128 12-lead ECGs (80 ECGs with AF drivers located in the PVs and 1048 in extra-PV areas). A total of 103 features were extracted from the signals. Binary decision tree classifier was trained on the simulated data and evaluated using hold-out cross-validation. The PVs were subsequently isolated in the models to assess PVI success. Finally, the classifier was tested on a clinical dataset (46 patients: 23 PV-dependent AF and 23 with additional extra-PV sources). Results: The classifier yielded 82.6% specificity and 73.9% sensitivity for detecting PV drivers on the clinical data. Consistency analysis on the 46 patients resulted in 93.5% results match. Applying PVI on the simulated AF cases terminated AF in 100% of the cases in the PV class. Conclusion: Machine learning–based classification of 12-lead-ECG allows discrimination between patients with PV drivers vs those with extra-PV drivers of AF. The novel algorithm may aid to identify patients with high acute success rates to PVI

    Hybrid machine learning to localize atrial flutter substrates using the surface 12-lead electrocardiogram

    Get PDF
    Aims Atrial flutter (AFlut) is a common re-entrant atrial tachycardia driven by self-sustainable mechanisms that cause excitations to propagate along pathways different from sinus rhythm. Intra-cardiac electrophysiological mapping and catheter ablation are often performed without detailed prior knowledge of the mechanism perpetuating AFlut, likely prolonging the procedure time of these invasive interventions. We sought to discriminate the AFlut location [cavotricuspid isthmus-dependent (CTI), peri-mitral, and other left atrium (LA) AFlut classes] with a machine learning-based algorithm using only the non-invasive signals from the 12-lead electrocardiogram (ECG). Methods and results Hybrid 12-lead ECG dataset of 1769 signals was used (1424 in silico ECGs, and 345 clinical ECGs from 115 patients—three different ECG segments over time were extracted from each patient corresponding to single AFlut cycles). Seventy-seven features were extracted. A decision tree classifier with a hold-out classification approach was trained, validated, and tested on the dataset randomly split after selecting the most informative features. The clinical test set comprised 38 patients (114 clinical ECGs). The classifier yielded 76.3% accuracy on the clinical test set with a sensitivity of 89.7%, 75.0%, and 64.1% and a positive predictive value of 71.4%, 75.0%, and 86.2% for CTI, peri-mitral, and other LA class, respectively. Considering majority vote of the three segments taken from each patient, the CTI class was correctly classified at 92%. Conclusion Our results show that a machine learning classifier relying only on non-invasive signals can potentially identify the location of AFlut mechanisms. This method could aid in planning and tailoring patient-specific AFlut treatments

    Hundreds of variants clustered in genomic loci and biological pathways affect human height

    Get PDF
    Most common human traits and diseases have a polygenic pattern of inheritance: DNA sequence variants at many genetic loci influence the phenotype. Genome-wide association (GWA) studies have identified more than 600 variants associated with human traits, but these typically explain small fractions of phenotypic variation, raising questions about the use of further studies. Here, using 183,727 individuals, we show that hundreds of genetic variants, in at least 180 loci, influence adult height, a highly heritable and classic polygenic trait. The large number of loci reveals patterns with important implications for genetic studies of common human diseases and traits. First, the 180 loci are not random, but instead are enriched for genes that are connected in biological pathways (P = 0.016) and that underlie skeletal growth defects (P < 0.001). Second, the likely causal gene is often located near the most strongly associated variant: in 13 of 21 loci containing a known skeletal growth gene, that gene was closest to the associated variant. Third, at least 19 loci have multiple independently associated variants, suggesting that allelic heterogeneity is a frequent feature of polygenic traits, that comprehensive explorations of already-discovered loci should discover additional variants and that an appreciable fraction of associated loci may have been identified. Fourth, associated variants are enriched for likely functional effects on genes, being over-represented among variants that alter amino-acid structure of proteins and expression levels of nearby genes. Our data explain approximately 10% of the phenotypic variation in height, and we estimate that unidentified common variants of similar effect sizes would increase this figure to approximately 16% of phenotypic variation (approximately 20% of heritable variation). Although additional approaches are needed to dissect the genetic architecture of polygenic human traits fully, our findings indicate that GWA studies can identify large numbers of loci that implicate biologically relevant genes and pathways.

    SARS-CoV-2 susceptibility and COVID-19 disease severity are associated with genetic variants affecting gene expression in a variety of tissues

    Get PDF
    Variability in SARS-CoV-2 susceptibility and COVID-19 disease severity between individuals is partly due to genetic factors. Here, we identify 4 genomic loci with suggestive associations for SARS-CoV-2 susceptibility and 19 for COVID-19 disease severity. Four of these 23 loci likely have an ethnicity-specific component. Genome-wide association study (GWAS) signals in 11 loci colocalize with expression quantitative trait loci (eQTLs) associated with the expression of 20 genes in 62 tissues/cell types (range: 1:43 tissues/gene), including lung, brain, heart, muscle, and skin as well as the digestive system and immune system. We perform genetic fine mapping to compute 99% credible SNP sets, which identify 10 GWAS loci that have eight or fewer SNPs in the credible set, including three loci with one single likely causal SNP. Our study suggests that the diverse symptoms and disease severity of COVID-19 observed between individuals is associated with variants across the genome, affecting gene expression levels in a wide variety of tissue types

    Sex-stratified Genome-wide Association Studies Including 270,000 Individuals Show Sexual Dimorphism in Genetic Loci for Anthropometric Traits

    Get PDF
    Peer reviewe

    A first update on mapping the human genetic architecture of COVID-19

    Get PDF
    peer reviewe
    corecore