1,026 research outputs found
Evolution: Complexity, uncertainty and innovation
Complexity science provides a general mathematical basis for evolutionary thinking. It makes us face the inherent, irreducible nature of uncertainty and the limits to knowledge and prediction. Complex, evolutionary systems work on the basis of on-going, continuous internal processes of exploration, experimentation and innovation at their underlying levels. This is acted upon by the level above, leading to a selection process on the lower levels and a probing of the stability of the level above. This could either be an organizational level above, or the potential market place. Models aimed at predicting system behaviour therefore consist of assumptions of constraints on the micro-level â and because of inertia or conformity may be approximately true for some unspecified time. However, systems without strong mechanisms of repression and conformity will evolve, innovate and change, creating new emergent structures, capabilities and characteristics. Systems with no individual freedom at their lower levels will have predictable behaviour in the short term â but will not survive in the long term. Creative, innovative, evolving systems, on the other hand, will more probably survive over longer times, but will not have predictable characteristics or behaviour. These minimal mechanisms are all that are required to explain (though not predict) the co-evolutionary processes occurring in markets, organizations, and indeed in emergent, evolutionary communities of practice. Some examples will be presented briefly
Ultraviolet and visible photometry of asteroid (21) Lutetia using the Hubble Space Telescope
The asteroid (21) Lutetia is the target of a planned close encounter by the
Rosetta spacecraft in July 2010. To prepare for that flyby, Lutetia has been
extensively observed by a variety of astronomical facilities. We used the
Hubble Space Telescope (HST) to determine the albedo of Lutetia over a wide
wavelength range, extending from ~150 nm to ~700 nm. Using data from a variety
of HST filters and a ground-based visible light spectrum, we employed synthetic
photometry techniques to derive absolute fluxes for Lutetia. New results from
ground-based measurements of Lutetia's size and shape were used to convert the
absolute fluxes into albedos. We present our best model for the spectral energy
distribution of Lutetia over the wavelength range 120-800 nm. There appears to
be a steep drop in the albedo (by a factor of ~2) for wavelengths shorter than
~300 nm. Nevertheless, the far ultraviolet albedo of Lutetia (~10%) is
considerably larger than that of typical C-chondrite material (~4%). The
geometric albedo at 550 nm is 16.5 +/- 1%. Lutetia's reflectivity is not
consistent with a metal-dominated surface at infrared or radar wavelengths, and
its albedo at all wavelengths (UV-visibile-IR-radar) is larger than observed
for typical primitive, chondritic material. We derive a relatively high FUV
albedo of ~10%, a result that will be tested by observations with the Alice
spectrograph during the Rosetta flyby of Lutetia in July 2010.Comment: 14 pages, 2 tables, 8 figure
The triaxial ellipsoid dimensions, rotational pole, and bulk density of ESA Rosetta target asteroid (21) Lutetia
We seek the best size estimates of the asteroid (21) Lutetia, the direction
of its spin axis, and its bulk density, assuming its shape is well described by
a smooth featureless triaxial ellipsoid, and to evaluate the deviations from
this assumption. Methods. We derive these quantities from the outlines of the
asteroid in 307 images of its resolved apparent disk obtained with adaptive
optics (AO) at Keck II and VLT, and combine these with recent mass
determinations to estimate a bulk density. Our best triaxial ellipsoid
diameters for Lutetia, based on our AO images alone, are a x b x c = 132 x 101
x 93 km, with uncertainties of 4 x 3 x 13 km including estimated systematics,
with a rotational pole within 5 deg. of ECJ2000 [long,lat] = [45, -7], or
EQJ2000 [RA, DEC] = [44, +9]. The AO model fit itself has internal precisions
of 1 x 1 x 8 km, but it is evident, both from this model derived from limited
viewing aspects and the radius vector model given in a companion paper, that
Lutetia has significant departures from an idealized ellipsoid. In particular,
the long axis may be overestimated from the AO images alone by about 10 km.
Therefore, we combine the best aspects of the radius vector and ellipsoid model
into a hybrid ellipsoid model, as our final result, of 124 +/- 5 x 101 +/- 4 x
93 +/- 13 km that can be used to estimate volumes, sizes, and projected areas.
The adopted pole position is within 5 deg. of [long, lat] = [52, -6] or[RA DEC]
= [52, +12]. Using two separately determined masses and the volume of our
hybrid model, we estimate a density of 3.5 +/- 1.1 or 4.3 +/- 0.8 g cm-3 . From
the density evidence alone, we argue that this favors an enstatite-chondrite
composition, although other compositions are formally allowed at the extremes
(low-porosity CV/CO carbonaceous chondrite or high-porosity metallic). We
discuss this in the context of other evidence.Comment: 9 pages, 8 figures, 5 tables, submitted to Astronomy and Astrophysic
Constraints on the perturbed mutual motion in Didymos due to impact-induced deformation of its primary after the DART impact
Binary near-Earth asteroid (65803) Didymos is the target of the proposed NASA
Double Asteroid Redirection Test (DART), part of the Asteroid Impact &
Deflection Assessment (AIDA) mission concept. In this mission, the DART
spacecraft is planned to impact the secondary body of Didymos, perturbing
mutual dynamics of the system. The primary body is currently rotating at a spin
period close to the spin barrier of asteroids, and materials ejected from the
secondary due to the DART impact are likely to reach the primary. These
conditions may cause the primary to reshape, due to landslides, or internal
deformation, changing the permanent gravity field. Here, we propose that if
shape deformation of the primary occurs, the mutual orbit of the system would
be perturbed due to a change in the gravity field. We use a numerical
simulation technique based on the full two-body problem to investigate the
shape effect on the mutual dynamics in Didymos after the DART impact. The
results show that under constant volume, shape deformation induces strong
perturbation in the mutual motion. We find that the deformation process always
causes the orbital period of the system to become shorter. If surface layers
with a thickness greater than ~0.4 m on the poles of the primary move down to
the equatorial region due to the DART impact, a change in the orbital period of
the system and in the spin period of the primary will be detected by
ground-based measurement.Comment: 8 pages, 7 figures, 2 tables, accepted for publication in MNRA
Vortex phase boundaries from ferromagnetic measurements in a patterned disc array
Using a recently developed broadband microwave measurement technique, we have studied the hysteretic appearance and disappearance with in-plane magnetic field of the uniform ferromagnetic resonance (FMR) mode of a patterned permalloy disk array. The observed features are consistent with our micromagnetic simulations (performed on an infinite array of such disk), which predict that on decreasing the magnetic field from a positively magnetized state at positive fields the array will: (i) pass continuously into a double-vortex state; (ii) followed by a discontinuous transition to a single-vortex state; and finally (iii) discontinuously into a negatively magnetized state at some negative field. The hysteretic counterpart occurs on reversing the field sweep and returning to positive fields. The FMR data are consistent with the hysteretic dc magnetization measurements performed earlier on samples patterned in an identical manner
Physical properties of ESA Rosetta target asteroid (21) Lutetia: Shape and flyby geometry
Aims. We determine the physical properties (spin state and shape) of asteroid
(21) Lutetia, target of the ESA Rosetta mission, to help in preparing for
observations during the flyby on 2010 July 10 by predicting the orientation of
Lutetia as seen from Rosetta.
Methods. We use our novel KOALA inversion algorithm to determine the physical
properties of asteroids from a combination of optical lightcurves,
disk-resolved images, and stellar occultations, although the latter are not
available for (21) Lutetia.
Results. We find the spin axis of (21) Lutetia to lie within 5 degrees of
({\lambda} = 52 deg., {\beta} = -6 deg.) in Ecliptic J2000 reference frame
(equatorial {\alpha} = 52 deg., {\delta} = +12 deg.), and determine an improved
sidereal period of 8.168 270 \pm 0.000 001 h. This pole solution implies the
southern hemisphere of Lutetia will be in "seasonal" shadow at the time of the
flyby. The apparent cross-section of Lutetia is triangular as seen "pole-on"
and more rectangular as seen "equator-on". The best-fit model suggests the
presence of several concavities. The largest of these is close to the north
pole and may be associated with large impacts.Comment: 17 pages, 5 figures, 3 tables, submitted to Astronomy and
Astrophysic
Nunalleq, Stories from the Village of Our Ancestors:Co-designing a multivocal educational resource based on an archaeological excavation
This work was funded by the UK-based Arts and Humanities Research Council through grants (AH/K006029/1) and (AH/R014523/1), a University of Aberdeen IKEC Award with additional support for travel and subsistence from the University of Dundee, DJCAD Research Committee RS2 project funding. Thank you to the many people who contributed their support, knowledge, feedback, voices and faces throughout the project, this list includes members of the local community, colleagues, specialists, students, and volunteers. If we have missed out any names we apologize but know that your help was appreciated. Jimmy Anaver, John Anderson, Alice Bailey, Kieran Baxter, Pauline Beebe, Ellinor Berggren, Dawn Biddison, Joshua Branstetter, Brendan Body, Lise Bos, Michael Broderick, Sarah Brown, Crystal Carter, Joseph Carter, Lucy Carter, Sally Carter, Ben Charles, Mary Church, Willard Church, Daniele Clementi, Annie Cleveland, Emily Cleveland, Joshua Cleveland, Aron Crowell, Neil Curtis, Angie Demma, Annie Don, Julia Farley, Veronique Forbes, Patti Fredericks, Tricia Gillam, Sean Gleason, Sven Haakanson, Cheryl Heitman, Grace Hill, Diana Hunter, Joel Isaak, Warren Jones, Stephan Jones, Ana Jorge, Solveig Junglas, Melia Knecht, Rick Knecht, Erika Larsen, Paul Ledger, Jonathan Lim Soon, Amber Lincoln, Steve Luke, Francis Lukezic, Eva Malvich, Pauline Matthews, Roy Mark, Edouard Masson-MacLean, Julie Masson-MacLean, Mhairi Maxwell, Chuna Mcintyre, Drew Michael, Amanda Mina, Anna Mossolova, Carl Nicolai Jr, Chris Niskanen, Molly Odell, Tom Paxton, Lauren Phillips, Lucy Qin, Charlie Roberts, Chris Rowe, Rufus Rowe,Chris Rowland, John Rundall, Melissa Shaginoff, Monica Shah, Anna Sloan, Darryl Small Jr, John Smith, Mike Smith, Joey Sparaga, Hannah Strehlau, Dora Strunk, Larissa Strunk, Lonny Strunk, Larry Strunk, Robbie Strunk, Sandra Toloczko, Richard Vanderhoek, the Qanirtuuq Incorporated Board, the Quinhagak Dance Group and the staff at Kuinerrarmiut Elitnaurviat. We also extend our thanks to three anonymous reviewers for their valuable comments on our paper.Peer reviewedPublisher PD
Near-Infrared Mapping and Physical Properties of the Dwarf-Planet Ceres
We study the physical characteristics (shape, dimensions, spin axis
direction, albedo maps, mineralogy) of the dwarf-planet Ceres based on
high-angular resolution near-infrared observations. We analyze adaptive optics
J/H/K imaging observations of Ceres performed at Keck II Observatory in
September 2002 with an equivalent spatial resolution of ~50 km. The spectral
behavior of the main geological features present on Ceres is compared with
laboratory samples. Ceres' shape can be described by an oblate spheroid (a = b
= 479.7 +/- 2.3 km, c = 444.4 +/- 2.1 km) with EQJ2000.0 spin vector
coordinates RA = 288 +/- 5 deg. and DEC = +66 +/- 5 deg. Ceres sidereal period
is measured to be 9.0741 +/- 0.0001 h. We image surface features with diameters
in the 50-180 km range and an albedo contrast of ~6% with respect to the
average Ceres albedo. The spectral behavior of the brightest regions on Ceres
is consistent with phyllosilicates and carbonate compounds. Darker isolated
regions could be related to the presence of frost.Comment: 11 pages, 8 Postscript figures, Accepted for publication in A&
A High Luminosity e+e- Collider to study the Higgs Boson
A strong candidate for the Standard Model Scalar boson, H(126), has been
discovered by the Large Hadron Collider (LHC) experiments. In order to study
this fundamental particle with unprecedented precision, and to perform
precision tests of the closure of the Standard Model, we investigate the
possibilities offered by An e+e- storage ring collider. We use a design
inspired by the B-factories, taking into account the performance achieved at
LEP2, and imposing a synchrotron radiation power limit of 100 MW. At the most
relevant centre-of-mass energy of 240 GeV, near-constant luminosities of 10^34
cm^{-2}s^{-1} are possible in up to four collision points for a ring of 27km
circumference. The achievable luminosity increases with the bending radius, and
for 80km circumference, a luminosity of 5 10^34 cm^{-2}s^{-1} in four collision
points appears feasible. Beamstrahlung becomes relevant at these high
luminosities, leading to a design requirement of large momentum acceptance both
in the accelerating system and in the optics. The larger machine could reach
the top quark threshold, would yield luminosities per interaction point of
10^36 cm^{-2}s^{-1} at the Z pole (91 GeV) and 2 10^35 cm^{-2}s^{-1} at the W
pair production threshold (80 GeV per beam). The energy spread is reduced in
the larger ring with respect to what is was at LEP, giving confidence that beam
polarization for energy calibration purposes should be available up to the W
pair threshold. The capabilities in term of physics performance are outlined.Comment: Submitted to the European Strategy Preparatory Group 01-04-2013 new
version as re-submitted to PRSTA
Vortex phase boundaries from ferromagnetic resonance measurements in a patterned disc array
Using a recently developed broadband microwave measurement technique, we have studied the hysteretic appearance and disappearance with in-plane magnetic field of the uniform ferromagnetic resonance (FMR) mode of a patterned permalloy disk array. The observed features are consistent with our micromagnetic simulations (performed on an infinite array of such disk), which predict that on decreasing the magnetic field from a positively magnetized state at positive fields the array will: (i) pass continuously into a double-vortex state; (ii) followed by a discontinuous transition to a single-vortex state; and finally (iii) discontinuously into a negatively magnetized state at some negative field. The hysteretic counterpart occurs on reversing the field sweep and returning to positive fields. The FMR data are consistent with the hysteretic dc magnetization measurements performed earlier on samples patterned in an identical manner
- âŠ