18 research outputs found

    Estimation of vortex density after superconducting film quench

    Full text link
    This paper addresses the problem of vortex formation during a rapid quench in a superconducting film. It builds on previous work showing that in a local gauge theory there are two distinct mechanisms of defect formation, based on fluctuations of the scalar and gauge fields, respectively. We show how vortex formation in a thin film differs from the fully two-dimensional case, on which most theoretical studies have focused. We discuss ways of testing theoretical predictions in superconductor experiments and analyse the results of recent experiments in this light.Comment: 7 pages, no figure

    A Grand Canonical Ensemble Approach to the Thermodynamic Properties of the Nucleon in the Quark-Gluon Coupling Model

    Get PDF
    In this paper, we put forward a way to study the nucleon's thermodynamic properties such as its temperature, entropy and so on, without inputting any free parameters by human hand, even the nucleon's mass and radius. First we use the Lagrangian density of the quark gluon coupling fields to deduce the Dirac Equation of the quarks confined in the gluon fields. By boundary conditions we solve the wave functions and energy eigenvalues of the quarks, and thus get energy-momentum tensor, nucleon mass, and density of states. Then we utilize a hybrid grand canonical ensemble, to generate the temperature and chemical potentials of quarks, antiquarks of three flovars by the four conservation laws of the energy and the valence quark numbers, after which, all other thermodynamic properties are known. The only seemed free paremeter, the nucleon radius is finally determined by the grand potential minimal principle.Comment: 5 pages, LaTe

    Stochastic Production Of Kink-Antikink Pairs In The Presence Of An Oscillating Background

    Get PDF
    We numerically investigate the production of kink-antikink pairs in a (1+1)(1+1) dimensional Ď•4\phi^4 field theory subject to white noise and periodic driving. The twin effects of noise and periodic driving acting in conjunction lead to considerable enhancement in the kink density compared to the thermal equilibrium value, for low dissipation coefficients and for a specific range of frequencies of the oscillating background. The dependence of the kink-density on the temperature of the heat bath, the amplitude of the oscillating background and value of the dissipation coefficient is also investigated. An interesting feature of our result is that kink-antikink production occurs even though the system always remains in the broken symmetry phase.Comment: Revtex, 21 pages including 7 figures; more references adde

    Nonequilibrium Evolution of Correlation Functions: A Canonical Approach

    Get PDF
    We study nonequilibrium evolution in a self-interacting quantum field theory invariant under space translation only by using a canonical approach based on the recently developed Liouville-von Neumann formalism. The method is first used to obtain the correlation functions both in and beyond the Hartree approximation, for the quantum mechanical analog of the ϕ4\phi^{4} model. The technique involves representing the Hamiltonian in a Fock basis of annihilation and creation operators. By separating it into a solvable Gaussian part involving quadratic terms and a perturbation of quartic terms, it is possible to find the improved vacuum state to any desired order. The correlation functions for the field theory are then investigated in the Hartree approximation and those beyond the Hartree approximation are obtained by finding the improved vacuum state corrected up to O(λ2){\cal O}(\lambda^2). These correlation functions take into account next-to-leading and next-to-next-to-leading order effects in the coupling constant. We also use the Heisenberg formalism to obtain the time evolution equations for the equal-time, connected correlation functions beyond the leading order. These equations are derived by including the connected 4-point functions in the hierarchy. The resulting coupled set of equations form a part of infinite hierarchy of coupled equations relating the various connected n-point functions. The connection with other approaches based on the path integral formalism is established and the physical implications of the set of equations are discussed with particular emphasis on thermalization.Comment: Revtex, 32 pages; substantial new material dealing with non-equilibrium evolution beyond Hartree approx. based on the LvN formalism, has been adde

    Non-Equilibrium Bose-Einstein Condensates, Dynamical Scaling and Symmetric Evolution in large N Phi^4 theory

    Get PDF
    We analyze the non-equilibrium dynamics of the O(N) Phi^4 model in the large N limit and for states of large energy density. The dynamics is dramatically different when the energy density is above the top of the tree level potential V_0 than when it is below it.When the energy density is below V_0, we find that non-perturbative particle production through spinodal instabilities provides a dynamical mechanism for the Maxwell construction. The asymptotic values of the order parameter only depend on the initial energy density and all values between the minima of the tree level potential are available, the asymptotic dynamical `effective potential' is flat between the minima. When the energy density is larger than V_0, the evolution samples ergodically the broken symmetry states, as a consequence of non-perturbative particle production via parametric amplification. Furthermore, we examine the quantum dynamics of phase ordering into the broken symmetry phase and find novel scaling behavior of the correlation function. There is a crossover in the dynamical correlation length at a time scale t_s \sim \ln(1/lambda). For t < t_s the dynamical correlation length \xi(t) \propto \sqrt{t} and the evolution is dominated by spinodal instabilities, whereas for t>t_s the evolution is non-linear and dominated by the onset of non-equilibrium Bose-Einstein condensation of long-wavelength Goldstone bosons.In this regime a true scaling solution emerges with a non- perturbative anomalous scaling length dimension z=1/2 and a dynamical correlation length \xi(t) \propto (t-t_s). The equal time correlation function in this scaling regime vanishes for r>2(t-t_s) by causality. For t > t_s the equal time correlation function falls of as 1/r. A semiclassical but stochastic description emerges for time scales t > t_s.Comment: Minor improvements, to appear in Phys. Rev. D. Latex file, 48 pages, 12 .ps figure
    corecore