14,890 research outputs found

    Constraints on extra dimensions from precision molecular spectroscopy

    Get PDF
    Accurate investigations of quantum level energies in molecular systems are shown to provide a test ground to constrain the size of compactified extra dimensions. This is made possible by the recent progress in precision metrology with ultrastable lasers on energy levels in neutral molecular hydrogen (H2_2, HD and D2_2) and the molecular hydrogen ions (H2+_2^+, HD+^+ and D2+_2^+). Comparisons between experiment and quantum electrodynamics calculations for these molecular systems can be interpreted in terms of probing large extra dimensions, under which conditions gravity will become much stronger. Molecules are a probe of space-time geometry at typical distances where chemical bonds are effective, i.e. at length scales of an \AA. Constraints on compactification radii for extra dimensions are derived within the Arkani-Hamed-Dimopoulos-Dvali framework, while constraints for curvature or brane separation are derived within the Randall-Sundrum framework. Based on the molecular spectroscopy of D2_2 molecules and HD+^+ ions, the compactification size for seven extra dimensions (in connection to M-theory defined in 11 dimensions) of equal size is shown to be limited to R7<0.6μR_7 < 0.6 \mum. While limits on compactification sizes of extra dimensions based on other branches of physics are compared, the prospect of further tightening constraints from the molecular method is discussed

    Formal Visual Modeling of Real-Time Systems in e-Motions: Two Case Studies

    Full text link
    e-Motions is an Eclipse-based visual timed model transformation framework with a Real-Time Maude semantics that supports the usual Maude formal analysis methods, including simulation, reachability analysis, and LTL model checking. e-Motions is characterized by a novel and powerful set of constructs for expressing timed behaviors. In this paper we illustrate the use of these constructs --- and thereby implicitly investigate their suitability to define real-time systems in an intuitive way --- to define and formally analyze two prototypical and very different real-time systems: (i) a simple round trip time protocol for computing the time it takes a message to travel from one node to another, and back; and (ii) the EDF scheduling algorithm.Comment: In Proceedings AMMSE 2011, arXiv:1106.596

    Proposal for the application of ICE and BIM sessions to increase productivity in construction

    Get PDF
    Several studies have shown that the main problem in the construction industry is low productivity. Therefore, this study focuses on developing a proposal through a methodology that can increase productivity in the construction of buildings. The proposed methodology is Virtual Design and Construction (VDC), which has 4 pillars: Building Information Modeling (BIM), Integrated Concurrent Engineering (ICE), metrics and Project Production Management (PPM). However, the article mainly develops BIM and ICE sessions. In addition, in the ICE sessions, "work executors"will be added, so that the information is fed back by both parties, specialist engineers and work executors. Finally, the proposal will be applied in a multi-family building project in the city of Lima - Peru, in order to obtain improvement results

    Microbes in the coral holobiont: partners through evolution, development, and ecological interactions

    Get PDF
    In the last two decades, genetic and genomic studies have revealed the astonishing diversity and ubiquity of microorganisms. Emergence and expansion of the human microbiome project has reshaped our thinking about how microbes control host health—not only as pathogens, but also as symbionts. In coral reef environments, scientists have begun to examine the role that microorganisms play in coral life history. Herein, we review the current literature on coral-microbe interactions within the context of their role in evolution, development, and ecology. We ask the following questions, first posed by McFall-Ngai et al. (2013) in their review of animal evolution, with specific attention to how coral-microbial interactions may be affected under future environmental conditions: (1) How do corals and their microbiome affect each other's genomes? (2) How does coral development depend on microbial partners? (3) How is homeostasis maintained between corals and their microbial symbionts? (4) How can ecological approaches deepen our understanding of the multiple levels of coral-microbial interactions? Elucidating the role that microorganisms play in the structure and function of the holobiont is essential for understanding how corals maintain homeostasis and acclimate to changing environmental conditions.Singapore-MIT Alliance for Research and Technology. Center for Environmental Sensing and ModelingMassachusetts Institute of Technology. Department of Civil and Environmental EngineeringMassachusetts Institute of Technology. Presidential Fellowshi
    • …
    corecore