42 research outputs found

    Multiparametric flow cytometry to characterize vaccine-induced polyfunctional T cell responses and T cell/NK cell exhaustion and memory phenotypes in mouse immuno-oncology models

    Get PDF
    Suitable methods to assess in vivo immunogenicity and therapeutic efficacy of cancer vaccines in preclinical cancer models are critical to overcome current limitations of cancer vaccines and enhance the clinical applicability of this promising immunotherapeutic strategy. In particular, availability of methods allowing the characterization of T cell responses to endogenous tumor antigens is required to assess vaccine potency and improve the antigen formulation. Moreover, multiparametric assays to deeply characterize tumor-induced and therapy-induced immune modulation are relevant to design mechanism-based combination immunotherapies. Here we describe a versatile multiparametric flow cytometry method to assess the polyfunctionality of tumor antigen-specific CD4+ and CD8+ T cell responses based on their production of multiple cytokines after short-term ex vivo restimulation with relevant tumor epitopes of the most common mouse strains. We also report the development and application of two 21-color flow cytometry panels allowing a comprehensive characterization of T cell and natural killer cell exhaustion and memory phenotypes in mice with a particular focus on preclinical cancer models

    Long-Term Bleeding Risk Prediction with Dual Antiplatelet Therapy After Acute Coronary Syndromes Treated Without Revascularization

    Full text link
    BACKGROUND Longitudinal bleeding risk scores have been validated in patients treated with dual antiplatelet therapy (DAPT) following percutaneous coronary intervention. How these scores apply to the population of patients with acute coronary syndrome (ACS) treated without revascularization remains unknown. The objective was to evaluate and compare the performances of the PRECISE-DAPT, PARIS, and DAPT (bleeding component) bleeding risk scores in the medically managed patients with ACS treated with DAPT. METHODS AND RESULTS TRILOGY ACS (Targeted Platelet Inhibition to Clarify the Optimal Strategy to Medically Manage Acute Coronary Syndromes) was a double-blind, placebo-controlled randomized trial conducted from 2008 to 2012 over a median follow-up of 17.0 months in 966 sites (52 countries). High-risk patients with unstable angina or non-ST-segment-elevation myocardial infarction who did not undergo revascularization were randomized to prasugrel or clopidogrel. The PRECISE-DAPT, PARIS, and DAPT (bleeding component) risk scores were applied in the TRILOGY ACS population to evaluate their performance to predict adjudicated non-coronary artery bypass grafting-related GUSTO (Global Use of Strategies to Open Occluded Coronary Arteries) severe/life-threatening/moderate and TIMI (Thrombolysis in Myocardial Infarction) major/minor bleeding with time-dependent c-indices. Among the 9326 participants, median age was 66 years (interquartile range, 59-74 years), and 3650 were females (39.1%). A total of 158 (1.69%) GUSTO severe/life-threatening/moderate and 174 (1.87%) TIMI major/minor non-coronary artery bypass grafting bleeding events occurred. The c-indices (95% CI) of the PRECISE-DAPT, PARIS, and DAPT (bleeding component) scores through 12 months were 0.716 (0.677-0.758), 0.693 (0.658-0.733), and 0.674 (0.637-0.713), respectively, for GUSTO bleeding and 0.624 (0.582-0.666), 0.612 (0.578-0.651), and 0.608 (0.571-0.649), respectively, for TIMI bleeding. There was no significant difference in the c-indices of each score based upon pairwise comparisons. CONCLUSIONS Among medically managed patients with ACS treated with DAPT, the performances of the PRECISE-DAPT, PARIS, and DAPT (bleeding component) scores were reasonable and similar to their performances in the derivation percutaneous coronary intervention populations. Bleeding risk scores may be used to predict longitudinal bleeding risk in patients with ACS treated with DAPT without revascularization and help support shared decision making. Registration: URL: https://www.clinicaltrials.gov; Unique identifier: NCT00699998

    Role of Mitogen-Activated Protein Kinases in Peptidoglycan-Induced Expression of Inducible Nitric Oxide Synthase and Nitric Oxide in Mouse Peritoneal Macrophages: Extracellular Signal-Related Kinase, a Negative Regulator ▿ †

    No full text
    The expression of inducible nitric oxide synthase (iNOS) and the production of nitric oxide (NO) are important host defense mechanisms against pathogens in mononuclear phagocytes. The objectives of this study were to examine the roles of mitogen-activated protein kinases (MAPKs) and transcription factors (nuclear factor-κB [NF-κB] and activating protein 1 [AP-1]) in peptidoglycan (PGN)-induced iNOS expression and NO production in macrophages. PGN is a cell wall component of Gram-positive bacteria that stimulates inflammatory responses both ex vivo and in vivo. PGN stimulates the activation of all three classes of MAPKs, extracellular signal-related kinase (ERK), c-Jun N-terminal kinase (JNK), and p38mapk in macrophages, albeit with differential activation kinetics. Using a selective inhibitor of JNK (SP600125) and JNK1/2 small interfering RNA (siRNA) knocked-down macrophages, it was observed that PGN-induced iNOS and NO expression is significantly inhibited. This suggested that JNK MAPK plays an essential role in PGN-induced iNOS expression and NO production. In contrast, inhibition of the ERK pathway using PD98059 dose dependently enhanced PGN-induced iNOS expression and NO production. PGN-induced ERK activation was attenuated in ERK1/2 siRNA knocked-down macrophages; however, NO and iNOS expression were significantly enhanced. An electrophoretic mobility shift assay showed that SP600125 inhibited PGN-induced NF-κB and AP-1 activation, whereas inhibition of the ERK pathway enhanced NF-κB activation, but with no effect on AP-1. These results indicate that the JNK MAPK positively regulate PGN-induced iNOS and NO expression by activating NF-κB and AP-1 transcription factors, whereas the ERK pathway plays a negative regulatory role via affecting NF-κB activity

    Risk Categorization Using New American College of Cardiology/American Heart Association Guidelines for Cholesterol Management and Its Relation to Alirocumab Treatment Following Acute Coronary Syndromes

    No full text
    10.1161/CIRCULATIONAHA.119.042551CIRCULATION140191578-158

    The DUNE Far Detector Vertical Drift Technology, Technical Design Report

    No full text
    International audienceDUNE is an international experiment dedicated to addressing some of the questions at the forefront of particle physics and astrophysics, including the mystifying preponderance of matter over antimatter in the early universe. The dual-site experiment will employ an intense neutrino beam focused on a near and a far detector as it aims to determine the neutrino mass hierarchy and to make high-precision measurements of the PMNS matrix parameters, including the CP-violating phase. It will also stand ready to observe supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the standard model. The DUNE far detector implements liquid argon time-projection chamber (LArTPC) technology, and combines the many tens-of-kiloton fiducial mass necessary for rare event searches with the sub-centimeter spatial resolution required to image those events with high precision. The addition of a photon detection system enhances physics capabilities for all DUNE physics drivers and opens prospects for further physics explorations. Given its size, the far detector will be implemented as a set of modules, with LArTPC designs that differ from one another as newer technologies arise. In the vertical drift LArTPC design, a horizontal cathode bisects the detector, creating two stacked drift volumes in which ionization charges drift towards anodes at either the top or bottom. The anodes are composed of perforated PCB layers with conductive strips, enabling reconstruction in 3D. Light-trap-style photon detection modules are placed both on the cryostat's side walls and on the central cathode where they are optically powered. This Technical Design Report describes in detail the technical implementations of each subsystem of this LArTPC that, together with the other far detector modules and the near detector, will enable DUNE to achieve its physics goals

    The DUNE Far Detector Vertical Drift Technology, Technical Design Report

    No full text
    International audienceDUNE is an international experiment dedicated to addressing some of the questions at the forefront of particle physics and astrophysics, including the mystifying preponderance of matter over antimatter in the early universe. The dual-site experiment will employ an intense neutrino beam focused on a near and a far detector as it aims to determine the neutrino mass hierarchy and to make high-precision measurements of the PMNS matrix parameters, including the CP-violating phase. It will also stand ready to observe supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the standard model. The DUNE far detector implements liquid argon time-projection chamber (LArTPC) technology, and combines the many tens-of-kiloton fiducial mass necessary for rare event searches with the sub-centimeter spatial resolution required to image those events with high precision. The addition of a photon detection system enhances physics capabilities for all DUNE physics drivers and opens prospects for further physics explorations. Given its size, the far detector will be implemented as a set of modules, with LArTPC designs that differ from one another as newer technologies arise. In the vertical drift LArTPC design, a horizontal cathode bisects the detector, creating two stacked drift volumes in which ionization charges drift towards anodes at either the top or bottom. The anodes are composed of perforated PCB layers with conductive strips, enabling reconstruction in 3D. Light-trap-style photon detection modules are placed both on the cryostat's side walls and on the central cathode where they are optically powered. This Technical Design Report describes in detail the technical implementations of each subsystem of this LArTPC that, together with the other far detector modules and the near detector, will enable DUNE to achieve its physics goals

    The DUNE Far Detector Vertical Drift Technology, Technical Design Report

    No full text
    DUNE is an international experiment dedicated to addressing some of the questions at the forefront of particle physics and astrophysics, including the mystifying preponderance of matter over antimatter in the early universe. The dual-site experiment will employ an intense neutrino beam focused on a near and a far detector as it aims to determine the neutrino mass hierarchy and to make high-precision measurements of the PMNS matrix parameters, including the CP-violating phase. It will also stand ready to observe supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the standard model. The DUNE far detector implements liquid argon time-projection chamber (LArTPC) technology, and combines the many tens-of-kiloton fiducial mass necessary for rare event searches with the sub-centimeter spatial resolution required to image those events with high precision. The addition of a photon detection system enhances physics capabilities for all DUNE physics drivers and opens prospects for further physics explorations. Given its size, the far detector will be implemented as a set of modules, with LArTPC designs that differ from one another as newer technologies arise. In the vertical drift LArTPC design, a horizontal cathode bisects the detector, creating two stacked drift volumes in which ionization charges drift towards anodes at either the top or bottom. The anodes are composed of perforated PCB layers with conductive strips, enabling reconstruction in 3D. Light-trap-style photon detection modules are placed both on the cryostat's side walls and on the central cathode where they are optically powered. This Technical Design Report describes in detail the technical implementations of each subsystem of this LArTPC that, together with the other far detector modules and the near detector, will enable DUNE to achieve its physics goals

    The DUNE Far Detector Vertical Drift Technology, Technical Design Report

    No full text
    International audienceDUNE is an international experiment dedicated to addressing some of the questions at the forefront of particle physics and astrophysics, including the mystifying preponderance of matter over antimatter in the early universe. The dual-site experiment will employ an intense neutrino beam focused on a near and a far detector as it aims to determine the neutrino mass hierarchy and to make high-precision measurements of the PMNS matrix parameters, including the CP-violating phase. It will also stand ready to observe supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the standard model. The DUNE far detector implements liquid argon time-projection chamber (LArTPC) technology, and combines the many tens-of-kiloton fiducial mass necessary for rare event searches with the sub-centimeter spatial resolution required to image those events with high precision. The addition of a photon detection system enhances physics capabilities for all DUNE physics drivers and opens prospects for further physics explorations. Given its size, the far detector will be implemented as a set of modules, with LArTPC designs that differ from one another as newer technologies arise. In the vertical drift LArTPC design, a horizontal cathode bisects the detector, creating two stacked drift volumes in which ionization charges drift towards anodes at either the top or bottom. The anodes are composed of perforated PCB layers with conductive strips, enabling reconstruction in 3D. Light-trap-style photon detection modules are placed both on the cryostat's side walls and on the central cathode where they are optically powered. This Technical Design Report describes in detail the technical implementations of each subsystem of this LArTPC that, together with the other far detector modules and the near detector, will enable DUNE to achieve its physics goals

    The DUNE Far Detector Vertical Drift Technology, Technical Design Report

    No full text
    International audienceDUNE is an international experiment dedicated to addressing some of the questions at the forefront of particle physics and astrophysics, including the mystifying preponderance of matter over antimatter in the early universe. The dual-site experiment will employ an intense neutrino beam focused on a near and a far detector as it aims to determine the neutrino mass hierarchy and to make high-precision measurements of the PMNS matrix parameters, including the CP-violating phase. It will also stand ready to observe supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the standard model. The DUNE far detector implements liquid argon time-projection chamber (LArTPC) technology, and combines the many tens-of-kiloton fiducial mass necessary for rare event searches with the sub-centimeter spatial resolution required to image those events with high precision. The addition of a photon detection system enhances physics capabilities for all DUNE physics drivers and opens prospects for further physics explorations. Given its size, the far detector will be implemented as a set of modules, with LArTPC designs that differ from one another as newer technologies arise. In the vertical drift LArTPC design, a horizontal cathode bisects the detector, creating two stacked drift volumes in which ionization charges drift towards anodes at either the top or bottom. The anodes are composed of perforated PCB layers with conductive strips, enabling reconstruction in 3D. Light-trap-style photon detection modules are placed both on the cryostat's side walls and on the central cathode where they are optically powered. This Technical Design Report describes in detail the technical implementations of each subsystem of this LArTPC that, together with the other far detector modules and the near detector, will enable DUNE to achieve its physics goals

    The DUNE Far Detector Vertical Drift Technology, Technical Design Report

    No full text
    International audienceDUNE is an international experiment dedicated to addressing some of the questions at the forefront of particle physics and astrophysics, including the mystifying preponderance of matter over antimatter in the early universe. The dual-site experiment will employ an intense neutrino beam focused on a near and a far detector as it aims to determine the neutrino mass hierarchy and to make high-precision measurements of the PMNS matrix parameters, including the CP-violating phase. It will also stand ready to observe supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the standard model. The DUNE far detector implements liquid argon time-projection chamber (LArTPC) technology, and combines the many tens-of-kiloton fiducial mass necessary for rare event searches with the sub-centimeter spatial resolution required to image those events with high precision. The addition of a photon detection system enhances physics capabilities for all DUNE physics drivers and opens prospects for further physics explorations. Given its size, the far detector will be implemented as a set of modules, with LArTPC designs that differ from one another as newer technologies arise. In the vertical drift LArTPC design, a horizontal cathode bisects the detector, creating two stacked drift volumes in which ionization charges drift towards anodes at either the top or bottom. The anodes are composed of perforated PCB layers with conductive strips, enabling reconstruction in 3D. Light-trap-style photon detection modules are placed both on the cryostat's side walls and on the central cathode where they are optically powered. This Technical Design Report describes in detail the technical implementations of each subsystem of this LArTPC that, together with the other far detector modules and the near detector, will enable DUNE to achieve its physics goals
    corecore