396 research outputs found

    Reactive Jumps Preserve Skeletal Muscle Structure, Phenotype, and Myofiber Oxidative Capacity in Bed Rest

    Get PDF
    © Copyright © 2020 Blottner, Hastermann, Weber, Lenz, Gambara, Limper, Rittweger, Bosutti, Degens and Salanova. Identification of countermeasures able to prevent disuse-induced muscle wasting is crucial to increase performance of crew members during space flight as well as ameliorate patient’s clinical outcome after long immobilization periods. We report on the outcome of short but high-impact reactive jumps (JUMP) as countermeasure during 60 days of 6° head-down tilt (HDT) bed rest on myofiber size, type composition, capillarization, and oxidative capacity in tissue biopsies (pre/post/recovery) from the knee extensor vastus lateralis (VL) and deep calf soleus (SOL) muscle of 22 healthy male participants (Reactive jumps in a sledge, RSL-study 2015–2016, DLR:envihab, Cologne). Bed rest induced a slow-to-fast myofiber shift (type I –>II) with an increased prevalence of hybrid fibers in SOL after bed rest without jumps (control, CTRL, p = 0.016). In SOL, JUMP countermeasure in bed rest prevented both fast and slow myofiber cross-sectional area (CSA) decrements (p = 0.005) in CTRL group. In VL, bed rest only induced capillary rarefaction, as reflected by the decrease in local capillary-to-fiber ratio (LCFR) for both type II (pre vs. post/R + 10, p = 0.028/0.028) and type I myofibers (pre vs. R + 10, p = 0.012), which was not seen in the JUMP group. VO2maxFiber (pL × mm–1 × min–1) calculated from succinate dehydrogenase (SDH)-stained cryosections (OD660 nm) showed no significant differences between groups. High-impact jump training in bed rest did not prevent disuse-induced myofiber atrophy in VL, mitigated phenotype transition (type I – >II) in SOL, and attenuated capillary rarefaction in the prime knee extensor VL however with little impact on oxidative capacity changes

    Role of peripheral quantitative computed tomography in identifying disuse osteoporosis in paraplegia

    Get PDF
    Objective: Disuse osteoporosis is a major long-term health consequence of spinal cord injury (SCI) that still needs to be addressed. Its management in SCI should begin with accurate diagnosis, followed by targeted treatments in the most vulnerable subgroups. We present data quantifying disuse osteoporosis in a cross-section of the Scottish paraplegic population to identify subgroups with lowest bone mineral density (BMD). Materials and Methods: Forty-seven people with chronic SCI at levels T2-L2 were scanned using peripheral Quantitative Computed Tomography (pQCT) at four tibial sites and two femoral sites, at the Queen Elizabeth National Spinal Injuries Unit, Glasgow (U.K.). At the distal epiphyses, trabecular BMD (BMDtrab), total BMD, total bone cross-sectional area (CSA), and bone mineral content (BMC) were determined. In the diaphyses, cortical BMD, total bone CSA, cortical CSA, and BMC were calculated. Bone, muscle and fat CSAs were estimated in the lower leg and thigh. Results: BMDtrab decreased exponentially with time since injury, at different rates in the tibia and femur. At most sites, female paraplegics had significantly lower BMC, total bone CSA and muscle CSA than male paraplegics. Subjects with lumbar SCI tended to have lower bone values and smaller muscle CSAs than in thoracic SCI. Conclusion: At the distal epiphyses of the tibia and femur, there is generally a rapid and extensive reduction in BMDtrab after SCI. Female subjects, and those with lumbar SCI, tend to have lower bone values than males or those with thoracic SCI, respectively. Keywords: Bone loss, osteoporosis, paraplegia, peripheral Quantitative Computed Tomography, spinal cord injur

    Quantum control of proximal spins using nanoscale magnetic resonance imaging

    Full text link
    Quantum control of individual spins in condensed matter systems is an emerging field with wide-ranging applications in spintronics, quantum computation, and sensitive magnetometry. Recent experiments have demonstrated the ability to address and manipulate single electron spins through either optical or electrical techniques. However, it is a challenge to extend individual spin control to nanoscale multi-electron systems, as individual spins are often irresolvable with existing methods. Here we demonstrate that coherent individual spin control can be achieved with few-nm resolution for proximal electron spins by performing single-spin magnetic resonance imaging (MRI), which is realized via a scanning magnetic field gradient that is both strong enough to achieve nanometric spatial resolution and sufficiently stable for coherent spin manipulations. We apply this scanning field-gradient MRI technique to electronic spins in nitrogen-vacancy (NV) centers in diamond and achieve nanometric resolution in imaging, characterization, and manipulation of individual spins. For NV centers, our results in individual spin control demonstrate an improvement of nearly two orders of magnitude in spatial resolution compared to conventional optical diffraction-limited techniques. This scanning-field-gradient microscope enables a wide range of applications including materials characterization, spin entanglement, and nanoscale magnetometry.Comment: 7 pages, 4 figure

    Whey protein plus bicarbonate supplement has little effects on structural atrophy and proteolysis marker immunopatterns in skeletal muscle disuse during 21 days of bed rest

    Get PDF
    Objectives: To investigate the effect of whey protein plus potassium bicarbonate supplement on disused skeletal muscle structure and proteolysis after bed rest (BR). Methods: Soleus (SOL) and vastus lateralis (VL) biopsies were sampled from ten (n=10) healthy male subjects (aged 31±6 years) who did BR once with and once without protein supplement as a dietary countermeasure (cross-over study design). The structural changes (myofibre size and type distribution) were analysed by histological sections, and muscle protein breakdown indirectly via the proteolysis markers, calpain 1 and 3, calpastatin, MuRF1 and 2, both in muscle homogenates and by immunohistochemistry. Results: BR caused size-changes in myofiber cross-sectional area (FCSA, SOL, p=0,004; VL, p=0.03), and myofiber slow-to-fast type transition with increased hybrids (SOL, p=0.043; VL, p=0.037) however with campaign differences in SOL (p<0.033). No significant effect of BR and supplement was found by any of the key proteolysis markers. Conclusions: Campaign differences in structural muscle adaptation may be an issue in cross-over design BR studies. The whey protein plus potassium bicarbonate supplement did not attenuate atrophy and fibre type transition during medium term bed rest. Alkaline whey protein supplements may however be beneficial as adjuncts to exercise countermeasures in disuse

    Breathe Easy EDA: a MATLAB toolbox for psychophysiology data management, cleaning, and analysis

    Get PDF
    Electrodermal activity (EDA) recordings are widely used in experimental psychology to measure skin conductance responses (SCRs) that reflect sympathetic nervous system arousal. However, irregular respiration patterns and deep breaths can cause EDA fluctuations that are difficult to distinguish from genuine arousal-related SCRs, presenting a methodological challenge that increases the likelihood of false positives in SCR analyses. Thus, it is crucial to identify respiration-related artifacts in EDA data. Here we developed a novel and freely distributed MATLAB toolbox, Breathe Easy EDA (BEEDA). BEEDA is a flexible toolbox that facilitates EDA visual inspection, allowing users to identify and eliminate respiration artifacts. BEEDA further includes functionality for EDA data analyses (measuring tonic and phasic EDA components) and reliability analyses for artifact identification. The toolbox is suitable for any experiment recording both EDA and respiration data, and flexibly adjusts to experiment-specific parameters (e.g., trial structure and analysis parameters)

    Impact of age, performance and athletic event on injury rates in master athletics - First results from an ongoing prospective study

    Get PDF
    Objectives: Recent studies have identified rates of injuries in young elite athletes during major athletic events. However, no such data exist on master athletes. The aim of this study was to assess incidence and types of injuries during the 2012 European Veteran Athletics Championships as a function of age, performance and athletic discipline. Methods: Report forms were used to identify injured athletes and injury types. Analysis included age (grouped in five-year bands beginning at age 35 years), athletic event, and age-graded performance. Results: Of the 3154 athletes (53.2 years (SD 12.3)) that participated in the championships (1004 (31.8%) women, 2150 (68.2%) men), 76 were registered as injured; 2.8% of the female (29), 2.2% of the male (47) athletes. There were no fractures. One injury required operative treatment (Achilles tendon rupture). Injury rates were significantly higher in the sprint/middle distance/jumps than the throws, long distance and decathlon/heptathlon groups (Χ² (3)=16.187, P=0.001). There was no significant interrelationship with age (Χ² (12)=6.495, P=0.889) or age-graded performance (Χ² (3)=3.563, P=0.313). Conclusions: The results suggest that healthy master athletes have a low risk of injury that does not increase with age or performance

    J Musculoskelet Neuronal Interact

    Full text link
    Long-term bed-rest is used to simulate the effect of spaceflight on the human body and test different kinds of countermeasures. The 2nd Berlin BedRest Study (BBR2-2) tested the efficacy of whole-body vibration in addition to high-load resisitance exercise in preventing bone loss during bed-rest. Here we present the protocol of the study and discuss its implementation. Twenty-four male subjects underwent 60-days of six-degree head down tilt bed-rest and were randomised to an inactive control group (CTR), a high-load resistive exercise group (RE) or a high-load resistive exercise with whole-body vibration group (RVE). Subsequent to events in the course of the study (e.g. subject withdrawal), 9 subjects participated in the CTR-group, 7 in the RVE-group and 8 (7 beyond bed-rest day-30) in the RE-group. Fluid intake, urine output and axiallary temperature increased during bed-rest (p or = .17). Body weight changes differed between groups (p < .0001) with decreases in the CTR-group, marginal decreases in the RE-group and the RVE-group displaying significant decreases in body-weight beyond bed-rest day-51 only. In light of events and experiences of the current study, recommendations on various aspects of bed-rest methodology are also discussed

    Effects of whole-body vibration or resistive-vibration exercise on blood clotting and related biomarkers: a systematic review

    Get PDF
    Whole-body vibration (WBV) and resistive vibration exercise (RVE) are utilized as countermeasures against bone loss, muscle wasting, and physical deconditioning. The safety of the interventions, in terms of the risk of inducing undesired blood clotting and venous thrombosis, is not clear. We therefore performed the present systematic review of the available scientific literature on the issue. The review was conducted following the guidelines by the Space Biomedicine Systematic Review Group, based on Cochrane review guidelines. The relevant context or environment of the studies was “ground-based environment”; space analogs or diseased conditions were not included. The search retrieved 801 studies; 77 articles were selected for further consideration after an initial screening. Thirty-three studies met the inclusion criteria. The main variables related to blood markers involved angiogenic and endothelial factors, fibrinolysis and coagulation markers, cytokine levels, inflammatory and plasma oxidative stress markers. Functional and hemodynamic markers involved blood pressure measurements, systemic vascular resistance, blood flow and microvascular and endothelial functions. The available evidence suggests neutral or potentially positive effects of short- and long-term interventions with WBV and RVE on variables related to blood coagulation, fibrinolysis, inflammatory status, oxidative stress, cardiovascular, microvascular and endothelial functions. No significant warning signs towards an increased risk of undesired clotting and venous thrombosis were identified. If confirmed by further studies, WBV and RVE could be part of the countermeasures aimed at preventing or attenuating the muscular and cardiovascular deconditioning associated with spaceflights, permanence on planetary habitats and ground-based simulations of microgravity

    Greater maintenance of bone mineral content in male than female athletes and in sprinting and jumping than endurance athletes: a longitudinal study of bone strength in elite masters athletes.

    Get PDF
    We investigated longitudinal changes in tibia bone strength in master power (jumping and sprinting) and endurance (distance) athletes of both sexes. Bone mass but not cross-sectional moment of inertia was better maintained in power than endurance athletes over time, particularly in men and independent of changes in performance. OBJECTIVE:Assessment of effects of sex and athletic discipline (lower limb power events, e.g. sprint running and jumping versus endurance running events) on longitudinal changes in bone strength in masters athletes. METHODS:We examined tibia and fibula bone properties at distal (4% distal-proximal tibia length) and proximal (66% length) sites using peripheral quantitative computed tomography (pQCT) in seventy-one track and field masters athletes (30 male, 41 female, age at baseline 57.0 ± 12.2 years) in a longitudinal cohort study that included at least two testing sessions over a mean period of 4.2 ± 3.1 years. Effects of time, as well as time × sex and time × discipline interactions on bone parameters and calf muscle cross-sectional area (CSA), were examined. RESULTS:Effects of time were sex and discipline-dependent, even following adjustment for enrolment age, sex and changes in muscle CSA and athletic performance. Male sex and participation in power events was associated with better maintenance of tibia bone mineral content (BMC, an indicator of bone compressive strength) at 4% and 66% sites. In contrast, there was no strong evidence of sex or discipline effects on cross-sectional moment of inertia (CSMI, an indicator of bone bending and torsional strength-P > 0.3 for interactions). Similar sex and discipline-specific changes were also observed in the fibula. CONCLUSIONS:Results suggest that male athletes and those participating in lower limb power-based rather than endurance-based disciplines have better maintenance of bone compressive but not bending and torsional strength

    Bone adaptation to altered loading after spinal cord injury: a study of bone and muscle strength

    Get PDF
    Bone loss from the paralysed limbs after spinal cord injury (SCI) is well documented. Under physiological conditions, bones are adapted to forces which mainly emerge from muscle pull. After spinal cord injury (SCI), muscles can no longer contract voluntarily and are merely activated during spasms. Based on the Ashworth scale, previous research has suggested that these spasms may mitigate bone losses. We therefore wished to assess muscle forces after SCI with a more direct measure and compare it to measures of bone strength. We hypothesized that the bones in SCI patients would be in relation to the loss of muscle forces. Six male patients with SCI 6.4 (SD 4.3) years earlier and 6 age-matched, able-bodied control subjects were investigated. Bone scans from the right knee were obtained by pQCT. The knee extensor muscles were electrically stimulated via the femoral nerve, isometric knee extension torque was measured and patellar tendon force was estimated. Tendon force upon electrical stimulation in the SCI group was 75% lower than in the control subjects (p<0.01). Volumetric bone mineral density of the patella and of the proximal tibia epiphysis were 50% lower in the SCI group than in the control subjects (p<0.01). Cortical area was lower by 43% in the SCI patients at the proximal tibia metaphysis, and by 33% at the distal femur metaphysis. No group differences were found in volumetric cortical density. Close curvilinear relationships were found between stress and volumetric density for the tibia epiphysis (r(2)=0.90) and for the patella (r(2)=0.91). A weaker correlation with the tendon force was found for the cortical area of the proximal tibia metaphysis (r(2)=0.63), and none for the distal femur metaphysis. These data suggest that, under steady state conditions after SCI, epiphyseal bones are well adapted to the muscular forces. For the metaphysis of the long bones, such an adaptation appears to be less evident. The reason for this remains unclear
    • …
    corecore