401 research outputs found

    Adaptive Observation Strategy for Dispersion Process Estimation Using Cooperating Mobile Sensors ⋆

    Get PDF
    Abstract: Efficient online state estimation of dynamic dispersion processes plays an important role in a variety of safety-critical applications. The use of mobile sensor platforms is increasingly considered in this context, but implies the generation of situation-dependent vehicle trajectories providing high information gain in real-time. In this paper, a new adaptive observation strategy is presented combining state estimation based on partial differential equation models of the dispersion process with a model-predictive control approach for multiple cooperating mobile sensors. In a repeating sequential procedure, based on the Ensemble Transform Kalman Filter, the uncertainty of the current estimate is determined and used to find valuable measurement locations. Those serve as target points for the controller providing optimal trajectories subject to the vehicles ’ motion dynamics and cooperation constraints. First promising results regarding accuracy and efficiency were obtained

    Benchmarking Image Sensors Under Adverse Weather Conditions for Autonomous Driving

    Full text link
    Adverse weather conditions are very challenging for autonomous driving because most of the state-of-the-art sensors stop working reliably under these conditions. In order to develop robust sensors and algorithms, tests with current sensors in defined weather conditions are crucial for determining the impact of bad weather for each sensor. This work describes a testing and evaluation methodology that helps to benchmark novel sensor technologies and compare them to state-of-the-art sensors. As an example, gated imaging is compared to standard imaging under foggy conditions. It is shown that gated imaging outperforms state-of-the-art standard passive imaging due to time-synchronized active illumination

    A Benchmark for Lidar Sensors in Fog: Is Detection Breaking Down?

    Full text link
    Autonomous driving at level five does not only means self-driving in the sunshine. Adverse weather is especially critical because fog, rain, and snow degrade the perception of the environment. In this work, current state of the art light detection and ranging (lidar) sensors are tested in controlled conditions in a fog chamber. We present current problems and disturbance patterns for four different state of the art lidar systems. Moreover, we investigate how tuning internal parameters can improve their performance in bad weather situations. This is of great importance because most state of the art detection algorithms are based on undisturbed lidar data
    • …
    corecore