7,412 research outputs found
Conservation Laws and the Multiplicity Evolution of Spectra at the Relativistic Heavy Ion Collider
Transverse momentum distributions in ultra-relativistic heavy ion collisions
carry considerable information about the dynamics of the hot system produced.
Direct comparison with the same spectra from collisions has proven
invaluable to identify novel features associated with the larger system, in
particular, the "jet quenching" at high momentum and apparently much stronger
collective flow dominating the spectral shape at low momentum. We point out
possible hazards of ignoring conservation laws in the comparison of high- and
low-multiplicity final states. We argue that the effects of energy and momentum
conservation actually dominate many of the observed systematics, and that
collisions may be much more similar to heavy ion collisions than generally
thought.Comment: 15 pages, 14 figures, submitted to PRC; Figures 2,4,5,6,12 updated,
Tables 1 and 3 added, typo in Tab.V fixed, appendix B partially rephrased,
minor typo in Eq.B1 fixed, minor wording; references adde
On the number of representations providing noiseless subsystems
This paper studies the combinatoric structure of the set of all
representations, up to equivalence, of a finite-dimensional semisimple Lie
algebra. This has intrinsic interest as a previously unsolved problem in
representation theory, and also has applications to the understanding of
quantum decoherence. We prove that for Hilbert spaces of sufficiently high
dimension, decoherence-free subspaces exist for almost all representations of
the error algebra. For decoherence-free subsystems, we plot the function
which is the fraction of all -dimensional quantum systems which
preserve bits of information through DF subsystems, and note that this
function fits an inverse beta distribution. The mathematical tools which arise
include techniques from classical number theory.Comment: 17 pp, 4 figs, accepted for Physical Review
Multi-Modal Human-Machine Communication for Instructing Robot Grasping Tasks
A major challenge for the realization of intelligent robots is to supply them
with cognitive abilities in order to allow ordinary users to program them
easily and intuitively. One way of such programming is teaching work tasks by
interactive demonstration. To make this effective and convenient for the user,
the machine must be capable to establish a common focus of attention and be
able to use and integrate spoken instructions, visual perceptions, and
non-verbal clues like gestural commands. We report progress in building a
hybrid architecture that combines statistical methods, neural networks, and
finite state machines into an integrated system for instructing grasping tasks
by man-machine interaction. The system combines the GRAVIS-robot for visual
attention and gestural instruction with an intelligent interface for speech
recognition and linguistic interpretation, and an modality fusion module to
allow multi-modal task-oriented man-machine communication with respect to
dextrous robot manipulation of objects.Comment: 7 pages, 8 figure
Energy Dependence of High Moments for Net-proton Distributions
High moments of multiplicity distributions of conserved quantities are
predicted to be sensitive to critical fluctuations. To understand the effect of
the complicated non-critical physics backgrounds on the proposed observable, we
have studied various moments of net-proton distributions with AMPT, Hijing,
Therminator and UrQMD models, in which no QCD critical point physics is
implemented. It is found that the centrality evolution of various moments of
net-proton distributions can be uniformly described by a superposition of
emission sources. In addition, in the absence of critical phenomena, some
moment products of net-proton distribution, related to the baryon number
susceptibilities ratio in Lattice QCD calculation, are predicted to be constant
as a function of the collision centrality. We argue that a non-monotonic
dependence of the moment products as a function collision centrality and the
beam energy may be used to locate the QCD critical point.Comment: SQM2009 Proceeding, 6 pages, 5 figure
The Turn-On of Mass Transfer in AM CVn Binaries: Implications for RX J0806+1527 and RX J1914+2456
We report on evolutionary calculations of the onset of mass transfer in AM
CVn binaries, treating the donor's evolution in detail. We show that during the
early contact phase, while the mass transfer rate, \Mdot, is increasing,
gravity wave (GW) emission continues to drive the binary to shorter orbital
period, \Porb. We argue that the phase where \Mdot > 0 and \nudot > 0
(\nu = 1/\Porb) can last between and yrs, significantly longer
than previously estimated. These results are applied to RX J0806+1527 (\Porb =
321 s) and RX J914+2456 (\Porb=569 s), both of which have measured \nudot >
0. \emph{Thus, a \nudot > 0 does not select between the unipolar inductor
and accretion driven models proposed as the source of X-rays in these systems}.
For the accretion model, we predict for RX J0806 that \ddot{\nu} \approx
\ee{1.0-1.5}{-28} Hz s and argue that timing observations can probe
at this level with a total yr baseline. We also place
constraints on each system's initial parameters given current observational
data.Comment: 5 pages, 3 figures, accepted to ApJ
A fast search strategy for gravitational waves from low-mass X-ray binaries
We present a new type of search strategy designed specifically to find
continuously emitting gravitational wave sources in known binary systems based
on the incoherent sum of frequency modulated binary signal sidebands. The
search pipeline can be divided into three stages: the first is a wide
bandwidth, F-statistic search demodulated for sky position. This is followed by
a fast second stage in which areas in frequency space are identified as signal
candidates through the frequency domain convolution of the F-statistic with an
approximate signal template. For this second stage only precise information on
the orbit period and approximate information on the orbital semi-major axis are
required apriori. For the final stage we propose a fully coherent Markov chain
monte carlo based follow up search on the frequency subspace defined by the
candidates identified by the second stage. This search is particularly suited
to the low-mass X-ray binaries, for which orbital period and sky position are
typically well known and additional orbital parameters and neutron star spin
frequency are not. We note that for the accreting X-ray millisecond pulsars,
for which spin frequency and orbital parameters are well known, the second
stage can be omitted and the fully coherent search stage can be performed. We
describe the search pipeline with respect to its application to a simplified
phase model and derive the corresponding sensitivity of the search.Comment: 13 pages, 3 figures, to appear in the GWDAW 11 conference proceeding
Anisotropic flow of strange particles at RHIC
Space-time picture of the anisotropic flow evolution in Au+Au collisions at
BNL RHIC is studied for strange hadrons within the microscopic quark-gluon
string model. The directed flow of both mesons and hyperons demonstrates wiggle
structure with the universal antiflow slope at |y| < 2 for minimum bias events.
This effect increases as the reaction becomes more peripheral. The development
of both components of the anisotropic flow is closely related to particle
freeze-out. Hadrons are emitted continuously, and different hadronic species
are decoupled from the system at different times. These hadrons contribute
differently to the formation and evolution of the elliptic flow, which can be
decomposed onto three components: (i) flow created by hadrons emitted from the
surface at the onset of the collision; (ii) flow produced by jets; (iii)
hydrodynamic flow. Due to these features, the general trend in elliptic flow
formation is that the earlier mesons are frozen, the weaker their elliptic
flow. In contrast, baryons frozen at the end of the system evolution have
stronger v2.Comment: proceedings of the conference SQM2004 (September 2004, Cape Town,
South Africa
Estimation of the particle-antiparticle correlation effect for pion production in heavy ion collisions
Estimation of the back-to-back pi-pi correlations arising due to evolution of
the pionic field in the course of pion production process is given for central
heavy nucleus collisions at moderate energies.Comment: 6 LaTeX pages + 5 ps figure
- âŠ