497 research outputs found

    Simultaneous bilateral hip replacement reveals superior outcome and fewer complications than two-stage procedures: a prospective study including 1819 patients and 5801 follow-ups from a total joint replacement registry

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Total joint replacements represent a considerable part of day-to-day orthopaedic routine and a substantial proportion of patients undergoing unilateral total hip arthroplasty require a contralateral treatment after the first operation. This report compares complications and functional outcome of simultaneous versus early and delayed two-stage bilateral THA over a five-year follow-up period.</p> <p>Methods</p> <p>The study is a post hoc analysis of prospectively collected data in the framework of the European IDES hip registry. The database query resulted in 1819 patients with 5801 follow-ups treated with bilateral THA between 1965 and 2002. According to the timing of the two operations the sample was divided into three groups: I) 247 patients with simultaneous bilateral THA, II) 737 patients with two-stage bilateral THA within six months, III) 835 patients with two-stage bilateral THA between six months and five years.</p> <p>Results</p> <p>Whereas postoperative hip pain and flexion did not differ between the groups, the best walking capacity was observed in group I and the worst in group III. The rate of intraoperative complications in the first group was comparable to that of the second. The frequency of postoperative local and systemic complication in group I was the lowest of the three groups. The highest rate of complications was observed in group III.</p> <p>Conclusions</p> <p>From the point of view of possible intra- and postoperative complications, one-stage bilateral THA is equally safe or safer than two-stage interventions. Additionally, from an outcome perspective the one-stage procedure can be considered to be advantageous.</p

    Towards Quantum Repeaters with Solid-State Qubits: Spin-Photon Entanglement Generation using Self-Assembled Quantum Dots

    Full text link
    In this chapter we review the use of spins in optically-active InAs quantum dots as the key physical building block for constructing a quantum repeater, with a particular focus on recent results demonstrating entanglement between a quantum memory (electron spin qubit) and a flying qubit (polarization- or frequency-encoded photonic qubit). This is a first step towards demonstrating entanglement between distant quantum memories (realized with quantum dots), which in turn is a milestone in the roadmap for building a functional quantum repeater. We also place this experimental work in context by providing an overview of quantum repeaters, their potential uses, and the challenges in implementing them.Comment: 51 pages. Expanded version of a chapter to appear in "Engineering the Atom-Photon Interaction" (Springer-Verlag, 2015; eds. A. Predojevic and M. W. Mitchell

    Neutrons from multiplicity-selected La-La and Nb-Nb collisions at 400A MeV and La-La collisions at 250A MeV

    Full text link
    Triple-differential cross sections for neutrons from high-multiplicity La-La collisions at 250 and 400 MeV per nucleon and Nb-Nb collisions at 400 MeV per nucleon were measured at several polar angles as a function of the azimuthal angle with respect to the reaction plane of the collision. The reaction plane was determined by a transverse-velocity method with the capability of identifying charged-particles with Z=1, Z=2, and Z > 2. The flow of neutrons was extracted from the slope at mid-rapidity of the curve of the average in-plane momentum vs the center-of-mass rapidity. The squeeze-out of the participant neutrons was observed in a direction normal to the reaction plane in the normalized momentum coordinates in the center-of-mass system. Experimental results of the neutron squeeze-out were compared with BUU calculations. The polar-angle dependence of the maximum azimuthal anisotropy ratio r(θ)r(\theta) was found to be insensitive to the mass of the colliding nuclei and the beam energy. Comparison of the observed polar-angle dependence of the maximum azimuthal anisotropy ratio r(θ)r(\theta) with BUU calculations for free neutrons revealed that r(θ)r(\theta) is insensitive also to the incompressibility modulus in the nuclear equation of state.Comment: ReVTeX, 16 pages, 17 figures. To be published in Physical Review

    Intrinsic regulation of hemangioma involution by platelet-derived growth factor

    Get PDF
    Infantile hemangioma is a vascular tumor that exhibits a unique natural cycle of rapid growth followed by involution. Previously, we have shown that hemangiomas arise from CD133+ stem cells that differentiate into endothelial cells when implanted in immunodeficient mice. The same clonally expanded stem cells also produced adipocytes, thus recapitulating the involuting phase of hemangioma. In the present study, we have elucidated the intrinsic mechanisms of adipocyte differentiation using hemangioma-derived stem cells (hemSCs). We found that platelet-derived growth factor (PDGF) is elevated during the proliferating phase and may inhibit adipocyte differentiation. hemSCs expressed high levels of PDGF-B and showed sustained tyrosine phosphorylation of PDGF receptors under basal (unstimulated) conditions. Inhibition of PDGF receptor signaling caused enhanced adipogenesis in hemSCs. Furthermore, exposure of hemSCs to exogenous PDGF-BB reduced the fat content and the expression of adipocyte-specific transcription factors. We also show that these autogenous inhibitory effects are mediated by PDGF receptor-β signaling. In summary, this study identifies PDGF signaling as an intrinsic negative regulator of hemangioma involution and highlights the therapeutic potential of disrupting PDGF signaling for the treatment of hemangiomas

    Identifying Trustworthy Experts: How Do Policymakers Find and Assess Public Health Researchers Worth Consulting or Collaborating With?

    Get PDF
    This paper reports data from semi-structured interviews on how 26 Australian civil servants, ministers and ministerial advisors find and evaluate researchers with whom they wish to consult or collaborate. Policymakers valued researchers who had credibility across the three attributes seen as contributing to trustworthiness: competence (an exemplary academic reputation complemented by pragmatism, understanding of government processes, and effective collaboration and communication skills); integrity (independence, “authenticity”, and faithful reporting of research); and benevolence (commitment to the policy reform agenda). The emphases given to these assessment criteria appeared to be shaped in part by policymakers' roles and the type and phase of policy development in which they were engaged. Policymakers are encouraged to reassess their methods for engaging researchers and to maximise information flow and support in these relationships. Researchers who wish to influence policy are advised to develop relationships across the policy community, but also to engage in other complementary strategies for promoting research-informed policy, including the strategic use of mass media

    Belle II Technical Design Report

    Full text link
    The Belle detector at the KEKB electron-positron collider has collected almost 1 billion Y(4S) events in its decade of operation. Super-KEKB, an upgrade of KEKB is under construction, to increase the luminosity by two orders of magnitude during a three-year shutdown, with an ultimate goal of 8E35 /cm^2 /s luminosity. To exploit the increased luminosity, an upgrade of the Belle detector has been proposed. A new international collaboration Belle-II, is being formed. The Technical Design Report presents physics motivation, basic methods of the accelerator upgrade, as well as key improvements of the detector.Comment: Edited by: Z. Dole\v{z}al and S. Un
    corecore