15 research outputs found

    Dynamic Optimization of Thermodynamically Rigorous Models of Multiphase Flow in Porous Subsurface Oil Reservoirs

    Full text link
    In this paper, we consider dynamic optimization of thermal and isothermal oil recovery processes which involve multicomponent three-phase flow in porous media. We present thermodynamically rigorous models of these processes based on 1) conservation of mass and energy, and 2) phase equilibrium. The conservation equations are partial differential equations. The phase equilibrium problems that are relevant to thermal and isothermal models are called the UV and the VT flash, and they are based on the second law of thermodynamics. We formulate these phase equilibrium problems as optimization problems and the phase equilibrium conditions as the corresponding first order optimality conditions. We demonstrate that the thermal and isothermal flow models are in a semi-explicit differential-algebraic form, and we solve the dynamic optimization problems with a previously developed gradient-based algorithm implemented in C/C++. We present numerical examples of optimized thermal and isothermal oil recovery strategies and discuss the computational performance of the dynamic optimization algorithm in these examples.Comment: 20 pages, 6 figure

    Model Predictive Control Tailored to Epidemic Models

    Full text link
    We propose a model predictive control (MPC) approach for minimising the social distancing and quarantine measures during a pandemic while maintaining a hard infection cap. To this end, we study the admissible and the maximal robust positively invariant set (MRPI) of the standard SEIR compartmental model with control inputs. Exploiting the fact that in the MRPI all restrictions can be lifted without violating the infection cap, we choose a suitable subset of the MRPI to define terminal constraints in our MPC routine and show that the number of infected people decays exponentially within this set. Furthermore, under mild assumptions we prove existence of a uniform bound on the time required to reach this terminal region (without violating the infection cap) starting in the admissible set. The findings are substantiated based on a numerical case study.Comment: 14 pages, 3 figure

    Estimating a Personalized Basal Insulin Dose from Short-Term Closed-Loop Data in Type 2 Diabetes

    Full text link
    In type 2 diabetes (T2D) treatment, finding a safe and effective basal insulin dose is a challenge. The dose-response is highly individual and to ensure safety, people with T2D titrate by slowly increasing the daily insulin dose to meet treatment targets. This titration can take months. To ease and accelerate the process, we use short-term artificial pancreas (AP) treatment tailored for initial titration and apply it as a diagnostic tool. Specifically, we present a method to automatically estimate a personalized daily dose of basal insulin from closed-loop data collected with an AP. Based on AP-data from a stochastic simulation model, we employ the continuous-discrete extended Kalman filter and a maximum likelihood approach to estimate parameters in a simple dose-response model for 100 virtual people. With the identified model, we compute a daily dose of basal insulin to meet treatment targets for each individual. We test the personalized dose and evaluate the treatment outcomes against clinical reference values. In the tested simulation setup, the proposed method is feasible. However, more extensive tests will reveal whether it can be deemed safe for clinical implementation.Comment: 6 pages, 4 figures, 1 table. Accepted for publication in Proceedings of the 2022 61st IEEE Conference on Decision and Control (CDC

    Model-based control algorithms for the quadruple tank system: An experimental comparison

    Full text link
    We compare the performance of proportional-integral-derivative (PID) control, linear model predictive control (LMPC), and nonlinear model predictive control (NMPC) for a physical setup of the quadruple tank system (QTS). We estimate the parameters in a continuous-discrete time stochastic nonlinear model for the QTS using a prediction-error-method based on the measured process data and a maximum likelihood (ML) criterion. In the NMPC algorithm, we use this identified continuous-discrete time stochastic nonlinear model. The LMPC algorithm is based on a linearization of this nonlinear model. We tune the PID controller using Skogestad's IMC tuning rules using a transfer function representation of the linearized model. Norms of the observed tracking errors and the rate of change of the manipulated variables are used to compare the performance of the control algorithms. The LMPC and NMPC perform better than the PID controller for a predefined time-varying setpoint trajectory. The LMPC and NMPC algorithms have similar performance.Comment: 6 pages, 5 figures, 3 tables, to be published in Foundations of Computer Aided Process Operations / Chemical Process Control (FOCAPO/CPC 2023). Hilton San Antonio Hill Country, San Antonio, Texa

    High-performance Uncertainty Quantification in Large-scale Virtual Clinical Trials of Closed-loop Diabetes Treatment

    No full text
    In this paper, we propose a virtual clinical trial for assessing the performance and identifying risks in closed-loop diabetes treatments. Virtual clinical trials enable fast and risk-free tests of many treatment variations for large populations of fictive patients (represented by mathematical models). We use closed-loop Monte Carlo simulation, implemented in high-performance software and hardware, to quantify the uncertainty in treatment performance as well as to compare the performance in different scenarios or of different closed-loop treatments. Our software can be used for testing a wide variety of control strategies ranging from heuristical approaches to nonlinear model predictive control. We present an example of a virtual clinical trial with one million patients over 52 weeks, and we use high-performance software and hardware to conduct the virtual trial in 1 h and 22 min.Comment: Accepted for publication in Proceedings of the 2022 American Control Conference (ACC), 6 pages, 8 figure
    corecore