39 research outputs found

    HIV Evolution in Early Infection: Selection Pressures, Patterns of Insertion and Deletion, and the Impact of APOBEC

    Get PDF
    The pattern of viral diversification in newly infected individuals provides information about the host environment and immune responses typically experienced by the newly transmitted virus. For example, sites that tend to evolve rapidly across multiple early-infection patients could be involved in enabling escape from common early immune responses, could represent adaptation for rapid growth in a newly infected host, or could represent reversion from less fit forms of the virus that were selected for immune escape in previous hosts. Here we investigated the diversification of HIV-1 env coding sequences in 81 very early B subtype infections previously shown to have resulted from transmission or expansion of single viruses (n = 78) or two closely related viruses (n = 3). In these cases, the sequence of the infecting virus can be estimated accurately, enabling inference of both the direction of substitutions as well as distinction between insertion and deletion events. By integrating information across multiple acutely infected hosts, we find evidence of adaptive evolution of HIV-1 env and identify a subset of codon sites that diversified more rapidly than can be explained by a model of neutral evolution. Of 24 such rapidly diversifying sites, 14 were either i) clustered and embedded in CTL epitopes that were verified experimentally or predicted based on the individual's HLA or ii) in a nucleotide context indicative of APOBEC-mediated G-to-A substitutions, despite having excluded heavily hypermutated sequences prior to the analysis. In several cases, a rapidly evolving site was embedded both in an APOBEC motif and in a CTL epitope, suggesting that APOBEC may facilitate early immune escape. Ten rapidly diversifying sites could not be explained by CTL escape or APOBEC hypermutation, including the most frequently mutated site, in the fusion peptide of gp41. We also examined the distribution, extent, and sequence context of insertions and deletions, and we provide evidence that the length variation seen in hypervariable loop regions of the envelope glycoprotein is a consequence of selection and not of mutational hotspots. Our results provide a detailed view of the process of diversification of HIV-1 following transmission, highlighting the role of CTL escape and hypermutation in shaping viral evolution during the establishment of new infections

    On the Inadequacy of the Current Transgenic Animal Models of Alzheimer’s Disease: The Path Forward

    No full text
    For at least two reasons, the current transgenic animal models of Alzheimer’s disease (AD) appear to be patently inadequate. They may be useful in many respects, the AD models; however, they are not. First, they are incapable of developing the full spectrum of the AD pathology. Second, they respond spectacularly well to drugs that are completely ineffective in the treatment of symptomatic AD. These observations indicate that both the transgenic animal models and the drugs faithfully reflect the theory that guided the design and development of both, the amyloid cascade hypothesis (ACH), and that both are inadequate because their underlying theory is. This conclusion necessitated the formulation of a new, all-encompassing theory of conventional AD—the ACH2.0. The two principal attributes of the ACH2.0 are the following. One, in conventional AD, the agent that causes the disease and drives its pathology is the intraneuronal amyloid-β (iAβ) produced in two distinctly different pathways. Two, following the commencement of AD, the bulk of Aβ is generated independently of Aβ protein precursor (AβPP) and is retained inside the neuron as iAβ. Within the framework of the ACH2.0, AβPP-derived iAβ accumulates physiologically in a lifelong process. It cannot reach levels required to support the progression of AD; it does, however, cause the disease. Indeed, conventional AD occurs if and when the levels of AβPP-derived iAβ cross the critical threshold, elicit the neuronal integrated stress response (ISR), and trigger the activation of the AβPP-independent iAβ generation pathway; the disease commences only when this pathway is operational. The iAβ produced in this pathway reaches levels sufficient to drive the AD pathology; it also propagates its own production and thus sustains the activity of the pathway and perpetuates its operation. The present study analyzes the reason underlying the evident inadequacy of the current transgenic animal models of AD. It concludes that they model, in fact, not Alzheimer’s disease but rather the effects of the neuronal ISR sustained by AβPP-derived iAβ, that this is due to the lack of the operational AβPP-independent iAβ production pathway, and that this mechanism must be incorporated into any successful AD model faithfully emulating the disease. The study dissects the plausible molecular mechanisms of the AβPP-independent iAβ production and the pathways leading to their activation, and introduces the concept of conventional versus unconventional Alzheimer’s disease. It also proposes the path forward, posits the principles of design of productive transgenic animal models of the disease, and describes the molecular details of their construction

    Results of Beta Secretase-Inhibitor Clinical Trials Support Amyloid Precursor Protein-Independent Generation of Beta Amyloid in Sporadic Alzheimer’s Disease

    No full text
    The present review analyzes the results of recent clinical trials of β secretase inhibition in sporadic Alzheimer’s disease (SAD), considers the striking dichotomy between successes in tests of β-site Amyloid Precursor Protein-Cleaving Enzyme (BACE) inhibitors in healthy subjects and familial Alzheimer’s disease (FAD) models versus persistent failures of clinical trials and interprets it as a confirmation of key predictions for a mechanism of amyloid precursor protein (APP)-independent, β secretase inhibition-resistant production of β amyloid in SAD, previously proposed by us. In light of this concept, FAD and SAD should be regarded as distinctly different diseases as far as β-amyloid generation mechanisms are concerned, and whereas β secretase inhibition would be neither applicable nor effective in the treatment of SAD, the β-site APP-Cleaving Enzyme (BACE) inhibitor(s) deemed failed in SAD trials could be perfectly suitable for the treatment of FAD. Moreover, targeting the aspects of Alzheimer’s disease (AD) other than cleavages of the APP by β and α secretases should have analogous impacts in both FAD and SAD

    Antisense globin RNA in mouse erythroid tissues: structure, origin, and possible function.

    No full text

    A possible mechanism responsible for the correction of transcription errors.

    No full text
    Nucleoside triphosphate phosphohydrolase (NTPase) activity was found in a preparation of E. Coli RNA polymerase. This enzymatic activity is capable of hydrolysing all four ribonucleoside triphosphates to the nucleoside diphosphates. However, during in vitro RNA synthesis directed by poly(dC) or poly(dT), only the non-complementary nucleoside triphosphate of the same heterocyclic class was hydrolysed. No incorporation of the non-complementary precursor into RNA could be detected in these experiments. When another RNA polymerase preparation, devoid of NTPase activity, was employed, there was no hydrolysis of any nucleoside triphosphate and significant incorporation of non-complemtary precursor into RNA was observed. These observations lead us to the conclusion that NTPase, acting in conjunction with RNA polymerase, has the function of correcting errors in transcription

    Pyrophosphate-condensing activity linked to nucleic acid synthesis.

    No full text
    In some preparations of DNA dependent RNA polymerase a new enzymatic activity has been found which catalyzes the condensation of two pyrophosphate molecules, liberated in the process of RNA synthesis, to one molecule of orthophosphate and one molecule of Mg (or Mn) - chelate complex with trimetaphosphate. This activity can also cooperate with DNA-polymerase, on condition that both enzymes originate from the same cells. These results point to two general conclusions. First, energy is conserved in the overall process of nucleic acid synthesis and turnover, so that the process does not require an energy influx from the cell's general resources. Second, the synthesis of nucleic acids is catalyzed by a complex enzyme system which contains at least two separate enzymes, one responsible for nucleic acid polymerization and the other for energy conservation via pyrophosphate condensation
    corecore