16 research outputs found

    Antiretroviral therapy timing impacts latent tuberculosis infection reactivation in a Mycobacterium tuberculosis/SIV coinfection model

    Get PDF
    Studies using the nonhuman primate model of Mycobacterium tuberculosis/simian immunodeficiency virus coinfection have revealed protective CD4+ T cell-independent immune responses that suppress latent tuberculosis infection (LTBI) reactivation. In particular, chronic immune activation rather than the mere depletion of CD4+ T cells correlates with reactivation due to SIV coinfection. Here, we administered combinatorial antiretroviral therapy (cART) 2 weeks after SIV coinfection to study whether restoration of CD4+ T cell immunity occurred more broadly, and whether this prevented reactivation of LTBI compared to cART initiated 4 weeks after SIV. Earlier initiation of cART enhanced survival, led to better control of viral replication, and reduced immune activation in the periphery and lung vasculature, thereby reducing the rate of SIV-induced reactivation. We observed robust CD8+ T effector memory responses and significantly reduced macrophage turnover in the lung tissue. However, skewed CD4+ T effector memory responses persisted and new TB lesions formed after SIV coinfection. Thus, reactivation of LTBI is governed by very early events of SIV infection. Timing of cART is critical in mitigating chronic immune activation. The potential novelty of these findings mainly relates to the development of a robust animal model of human M. tuberculosis/HIV coinfection that allows the testing of underlying mechanisms

    Phage-Encoded Cationic Antimicrobial Peptide Required for Lysis

    Get PDF
    Abstract: Most phages of Gram-negative bacteria hosts encode spanins for disruption of the outer membrane, which is the last step in host lysis. However, bioinformatic analysis indicates that ∼15% of these phages lack a spanin gene, suggesting they have an alternate way of disrupting the outer membrane (OM). Here, we show that the T7-like coliphage phiKT causes an explosive cell lysis associated with spanin activity despite not encoding spanins. A putative lysis cassette cloned from the phiKT late gene region includes the hypothetical novel gene 28 located between the holin and endolysin genes and supports inducible lysis in Escherichia coli K-12. Moreover, induction of an isogenic construct lacking gene 28 resulted in divalent cation-stabilized spherical cells rather than lysis, implicating gp28 in OM disruption. Additionally, gp28 was shown to complement the lysis defect of a spanin-null λ lysogen. Gene 28 encodes a 56-amino acid cationic protein with predicted amphipathic helical structure and is membrane-associated after lysis. Urea and KCl washes did not release gp28 from the particulate, suggesting a strong hydrophobic membrane interaction. Fluorescence microscopy supports membrane localization of the gp28 protein before lysis. The protein gp28 is similar in size, charge, predicted fold, and membrane association to the human cathelicidin antimicrobial peptide LL-37. Synthesized gp28 behaved similarly to LL-37 in standard assays mixing peptide and cells to measure bactericidal and inhibitory effects. Taken together, these results indicate that phiKT gp28 is a phage-encoded cationic antimicrobial peptide that disrupts bacterial outer membranes during host lysis and, thus, establishes a new class of phage lysis proteins, the disruptins. Importance: We provide evidence that phiKT produces an antimicrobial peptide for outer membrane disruption during lysis. This protein, designated a disruptin, is a new paradigm for phage lysis and has no similarities to other known lysis genes. Although many mechanisms have been proposed for the function of antimicrobial peptides, there is no consensus on the molecular basis of membrane disruption. Additionally, there is no established genetic system to support such studies. Therefore, the phiKT disruptin may represent the first genetically tractable antimicrobial peptide, facilitating mechanistic analyses

    Inactivation and sub-lethal injury of salmonella typhi, salmonella typhimurium and vibrio cholerae in copper water storage vessels

    Get PDF
    Background: This study provides information on the antibacterial effect of copper against the water-borne pathogens Salmonella Typhi, Salmonella Typhimurium and Vibrio cholerae. Methods: Suspensions of each pathogen were kept in water within a traditional copper vessel at 30°C for 24 h. Samples were withdrawn, diluted and plated onto suitable growth media. Conventional enumeration of healthy (uninjured) bacteria was carried out using standard aerobic incubation conditions. Additionally, reactive oxygen species-neutralised (ROS-n) conditions were achieved by adding the peroxide scavenger sodium pyruvate to the medium with anaerobic incubation, to enumerate uninjured (ROS-insensitive) and injured (ROS-sensitive) bacteria. Differences between log-transformed means of conventional (aerobic) and ROS-n counts were statistically evaluated using t tests. Results: Overall, all three pathogens were inactivated by storage in copper vessels for 24 h. However, for shorter-term incubation (4-12 h), higher counts were observed under ROS-n conditions than under aerobic conditions, which demonstrate the presence of substantial numbers of sub-lethally injured cells prior to their complete inactivation. Conclusions: The present study has for the first time confirmed that these bacterial pathogens are inactivated by storage in a copper vessel within 24 h. However, it has also demonstrated that it is necessary to account for short-term sub-lethal injury, manifest as ROS-sensitivity, in order to more fully understand the process. This has important practical implications in terms of the time required to store water within a copper vessel to completely inactivate these bacteria and thereby remove the risk of water-borne disease transmission by this route

    A Murine Model to Study the Antibacterial Effect of Copper on Infectivity of Salmonella Enterica Serovar Typhimurium

    No full text
    This study investigated the effect of copper as an antibacterial agent on the infectivity of Salmonella enterica serovar Typhimurium. Mice were infected orally with a standardized dose of unstressed Salmonella Typhimurium and copper-stressed cells of Salmonella Typhimurium. Bacterial counts in ileum, blood, liver and spleen were observed up to 168 h under normal aerobic conditions. Serum sensitivity, phagocytosis, malondialdehyde levels and histopathology were studied for both set of animals. A decreased bacterial count in the organs with mild symptoms of infection and a complete recovery by 48 h was observed in mice infected with copper-stressed bacteria. Histopathological examination of ileum tissue demonstrated regeneration of damaged tissue post-infection with copper-stressed bacteria and no malondialdehyde levels were detected after 24 h in ileum, spleen and liver. Exposure to copper sensitized Salmonella Typhimurium to the lytic action of serum and intracellular killing by peritoneal macrophages. It can be concluded that copper stress confers a decrease in the infectivity of healthy Salmonella Typhimurium in normal mice. This study highlights the significance of use of copper as an antibacterial agent against Salmonella Typhimurium in reducing the risk of incidence of Salmonella infections from contaminated water

    The antimicrobial effects of copper in drinking water

    No full text
    "The effect of temperature, pH, presence of inorganic ions and organic matter in water stored for 24 h in a copper water storage vessel was studied and enumeration was carried out under normal aerobic conditions and conditions designed to neutralise reactive oxygen species by the addition of 0.5% w/v sodium pyruvate and incubation in an anaerobic jar containing an anaerobic gas pack to encourage fermentative metabolism... The present study demonstrated complete inactivation of Salmonella Typhimurium, Salmonella Typhi and Vibrio cholerae by storage in a copper vessel for 24 h... The results of the present study highlight the significance of using copper as an antibacterial agent against common water-borne pathogens in reducing the risk of incidence of infections from contaminated water"--Abstract

    Traditional copper water storage vessels and sub-lethal injury of Salmonella enterica serovar Typhi and Vibrio cholerae

    No full text
    Aim: Recent studies on Escherichia coli have demonstrated sub-lethal injury - sensitivity to oxygen and selective agents prior to irreversible inactivation when kept in water in a brass vessel. The present study was carried out to investigate whether equivalent responses occur in copper vessels using the pathogens Salmonella enterica serovar Typhi and Vibrio cholerae. Methods: Bacterial suspensions were stored in water in a traditional copper vessel for up to 24 h at 30ºC. Samples were withdrawn and plated on selective and non-selective media, then incubated under (a) aerobic conditions and (b) conditions where reactive oxygen species were neutralized to enumerate injured bacteria. Results: Short-term incubation in water kept in a copper vessel caused a greater decrease in counts for both pathogens on selective media, compared to non-selective media with greater differences between aerobic and ROS-n counts using selective media compared to non-selective nutrient agar. Conclusion: These findings have practical implications for the short-term storage of water samples in copper storage vessel as the possibility of bacterial injury is high, hence enumeration under conventional aerobic conditions may not be sufficient to give a count of all viable bacteria

    Single-Cell Transcriptomics of <i>Mtb</i>/HIV Co-Infection

    No full text
    Tuberculosis (TB) and Human Immunodeficiency Virus (HIV) co-infection continues to pose a significant healthcare burden. HIV co-infection during TB predisposes the host to the reactivation of latent TB infection (LTBI), worsening disease conditions and mortality. There is a lack of biomarkers of LTBI reactivation and/or immune-related transcriptional signatures to distinguish active TB from LTBI and predict TB reactivation upon HIV co-infection. Characterizing individual cells using next-generation sequencing-based technologies has facilitated novel biological discoveries about infectious diseases, including TB and HIV pathogenesis. Compared to the more conventional sequencing techniques that provide a bulk assessment, single-cell RNA sequencing (scRNA-seq) can reveal complex and new cell types and identify more high-resolution cellular heterogeneity. This review will summarize the progress made in defining the immune atlas of TB and HIV infections using scRNA-seq, including host-pathogen interactions, heterogeneity in HIV pathogenesis, and the animal models employed to model disease. This review will also address the tools needed to bridge the gap between disease outcomes in single infection vs. co-infection. Finally, it will elaborate on the translational benefits of single-cell sequencing in TB/HIV diagnosis in humans

    Inactivation and sub-lethal injury of Escherichia coli in a copper water storage vessel : effect of inorganic and organic constituents

    No full text
    This study provides information on the effects of inorganic and organic constituents on inactivation and sub-lethal injury of Escherichia coli in water stored in a copper vessel
    corecore